This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodf1o.1 | |- ( k = G -> B = D ) |
|
| fprodf1o.2 | |- ( ph -> C e. Fin ) |
||
| fprodf1o.3 | |- ( ph -> F : C -1-1-onto-> A ) |
||
| fprodf1o.4 | |- ( ( ph /\ n e. C ) -> ( F ` n ) = G ) |
||
| fprodf1o.5 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| Assertion | fprodf1o | |- ( ph -> prod_ k e. A B = prod_ n e. C D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodf1o.1 | |- ( k = G -> B = D ) |
|
| 2 | fprodf1o.2 | |- ( ph -> C e. Fin ) |
|
| 3 | fprodf1o.3 | |- ( ph -> F : C -1-1-onto-> A ) |
|
| 4 | fprodf1o.4 | |- ( ( ph /\ n e. C ) -> ( F ` n ) = G ) |
|
| 5 | fprodf1o.5 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 6 | prod0 | |- prod_ k e. (/) B = 1 |
|
| 7 | 3 | adantr | |- ( ( ph /\ C = (/) ) -> F : C -1-1-onto-> A ) |
| 8 | f1oeq2 | |- ( C = (/) -> ( F : C -1-1-onto-> A <-> F : (/) -1-1-onto-> A ) ) |
|
| 9 | 8 | adantl | |- ( ( ph /\ C = (/) ) -> ( F : C -1-1-onto-> A <-> F : (/) -1-1-onto-> A ) ) |
| 10 | 7 9 | mpbid | |- ( ( ph /\ C = (/) ) -> F : (/) -1-1-onto-> A ) |
| 11 | f1ofo | |- ( F : (/) -1-1-onto-> A -> F : (/) -onto-> A ) |
|
| 12 | 10 11 | syl | |- ( ( ph /\ C = (/) ) -> F : (/) -onto-> A ) |
| 13 | fo00 | |- ( F : (/) -onto-> A <-> ( F = (/) /\ A = (/) ) ) |
|
| 14 | 13 | simprbi | |- ( F : (/) -onto-> A -> A = (/) ) |
| 15 | 12 14 | syl | |- ( ( ph /\ C = (/) ) -> A = (/) ) |
| 16 | 15 | prodeq1d | |- ( ( ph /\ C = (/) ) -> prod_ k e. A B = prod_ k e. (/) B ) |
| 17 | prodeq1 | |- ( C = (/) -> prod_ n e. C D = prod_ n e. (/) D ) |
|
| 18 | prod0 | |- prod_ n e. (/) D = 1 |
|
| 19 | 17 18 | eqtrdi | |- ( C = (/) -> prod_ n e. C D = 1 ) |
| 20 | 19 | adantl | |- ( ( ph /\ C = (/) ) -> prod_ n e. C D = 1 ) |
| 21 | 6 16 20 | 3eqtr4a | |- ( ( ph /\ C = (/) ) -> prod_ k e. A B = prod_ n e. C D ) |
| 22 | 21 | ex | |- ( ph -> ( C = (/) -> prod_ k e. A B = prod_ n e. C D ) ) |
| 23 | 2fveq3 | |- ( m = ( f ` n ) -> ( ( k e. A |-> B ) ` ( F ` m ) ) = ( ( k e. A |-> B ) ` ( F ` ( f ` n ) ) ) ) |
|
| 24 | simprl | |- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> ( # ` C ) e. NN ) |
|
| 25 | simprr | |- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) |
|
| 26 | f1of | |- ( F : C -1-1-onto-> A -> F : C --> A ) |
|
| 27 | 3 26 | syl | |- ( ph -> F : C --> A ) |
| 28 | 27 | ffvelcdmda | |- ( ( ph /\ m e. C ) -> ( F ` m ) e. A ) |
| 29 | 5 | fmpttd | |- ( ph -> ( k e. A |-> B ) : A --> CC ) |
| 30 | 29 | ffvelcdmda | |- ( ( ph /\ ( F ` m ) e. A ) -> ( ( k e. A |-> B ) ` ( F ` m ) ) e. CC ) |
| 31 | 28 30 | syldan | |- ( ( ph /\ m e. C ) -> ( ( k e. A |-> B ) ` ( F ` m ) ) e. CC ) |
| 32 | 31 | adantlr | |- ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ m e. C ) -> ( ( k e. A |-> B ) ` ( F ` m ) ) e. CC ) |
| 33 | simpr | |- ( ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) -> f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) |
|
| 34 | f1oco | |- ( ( F : C -1-1-onto-> A /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) -> ( F o. f ) : ( 1 ... ( # ` C ) ) -1-1-onto-> A ) |
|
| 35 | 3 33 34 | syl2an | |- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> ( F o. f ) : ( 1 ... ( # ` C ) ) -1-1-onto-> A ) |
| 36 | f1of | |- ( ( F o. f ) : ( 1 ... ( # ` C ) ) -1-1-onto-> A -> ( F o. f ) : ( 1 ... ( # ` C ) ) --> A ) |
|
| 37 | 35 36 | syl | |- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> ( F o. f ) : ( 1 ... ( # ` C ) ) --> A ) |
| 38 | fvco3 | |- ( ( ( F o. f ) : ( 1 ... ( # ` C ) ) --> A /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( ( k e. A |-> B ) o. ( F o. f ) ) ` n ) = ( ( k e. A |-> B ) ` ( ( F o. f ) ` n ) ) ) |
|
| 39 | 37 38 | sylan | |- ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( ( k e. A |-> B ) o. ( F o. f ) ) ` n ) = ( ( k e. A |-> B ) ` ( ( F o. f ) ` n ) ) ) |
| 40 | f1of | |- ( f : ( 1 ... ( # ` C ) ) -1-1-onto-> C -> f : ( 1 ... ( # ` C ) ) --> C ) |
|
| 41 | 40 | adantl | |- ( ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) -> f : ( 1 ... ( # ` C ) ) --> C ) |
| 42 | 41 | adantl | |- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> f : ( 1 ... ( # ` C ) ) --> C ) |
| 43 | fvco3 | |- ( ( f : ( 1 ... ( # ` C ) ) --> C /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( F o. f ) ` n ) = ( F ` ( f ` n ) ) ) |
|
| 44 | 42 43 | sylan | |- ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( F o. f ) ` n ) = ( F ` ( f ` n ) ) ) |
| 45 | 44 | fveq2d | |- ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( k e. A |-> B ) ` ( ( F o. f ) ` n ) ) = ( ( k e. A |-> B ) ` ( F ` ( f ` n ) ) ) ) |
| 46 | 39 45 | eqtrd | |- ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( ( k e. A |-> B ) o. ( F o. f ) ) ` n ) = ( ( k e. A |-> B ) ` ( F ` ( f ` n ) ) ) ) |
| 47 | 23 24 25 32 46 | fprod | |- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> prod_ m e. C ( ( k e. A |-> B ) ` ( F ` m ) ) = ( seq 1 ( x. , ( ( k e. A |-> B ) o. ( F o. f ) ) ) ` ( # ` C ) ) ) |
| 48 | 27 | ffvelcdmda | |- ( ( ph /\ n e. C ) -> ( F ` n ) e. A ) |
| 49 | 4 48 | eqeltrrd | |- ( ( ph /\ n e. C ) -> G e. A ) |
| 50 | eqid | |- ( k e. A |-> B ) = ( k e. A |-> B ) |
|
| 51 | 1 50 | fvmpti | |- ( G e. A -> ( ( k e. A |-> B ) ` G ) = ( _I ` D ) ) |
| 52 | 49 51 | syl | |- ( ( ph /\ n e. C ) -> ( ( k e. A |-> B ) ` G ) = ( _I ` D ) ) |
| 53 | 4 | fveq2d | |- ( ( ph /\ n e. C ) -> ( ( k e. A |-> B ) ` ( F ` n ) ) = ( ( k e. A |-> B ) ` G ) ) |
| 54 | eqid | |- ( n e. C |-> D ) = ( n e. C |-> D ) |
|
| 55 | 54 | fvmpt2i | |- ( n e. C -> ( ( n e. C |-> D ) ` n ) = ( _I ` D ) ) |
| 56 | 55 | adantl | |- ( ( ph /\ n e. C ) -> ( ( n e. C |-> D ) ` n ) = ( _I ` D ) ) |
| 57 | 52 53 56 | 3eqtr4rd | |- ( ( ph /\ n e. C ) -> ( ( n e. C |-> D ) ` n ) = ( ( k e. A |-> B ) ` ( F ` n ) ) ) |
| 58 | 57 | ralrimiva | |- ( ph -> A. n e. C ( ( n e. C |-> D ) ` n ) = ( ( k e. A |-> B ) ` ( F ` n ) ) ) |
| 59 | nffvmpt1 | |- F/_ n ( ( n e. C |-> D ) ` m ) |
|
| 60 | 59 | nfeq1 | |- F/ n ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) ) |
| 61 | fveq2 | |- ( n = m -> ( ( n e. C |-> D ) ` n ) = ( ( n e. C |-> D ) ` m ) ) |
|
| 62 | 2fveq3 | |- ( n = m -> ( ( k e. A |-> B ) ` ( F ` n ) ) = ( ( k e. A |-> B ) ` ( F ` m ) ) ) |
|
| 63 | 61 62 | eqeq12d | |- ( n = m -> ( ( ( n e. C |-> D ) ` n ) = ( ( k e. A |-> B ) ` ( F ` n ) ) <-> ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) ) ) ) |
| 64 | 60 63 | rspc | |- ( m e. C -> ( A. n e. C ( ( n e. C |-> D ) ` n ) = ( ( k e. A |-> B ) ` ( F ` n ) ) -> ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) ) ) ) |
| 65 | 58 64 | mpan9 | |- ( ( ph /\ m e. C ) -> ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) ) ) |
| 66 | 65 | adantlr | |- ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ m e. C ) -> ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) ) ) |
| 67 | 66 | prodeq2dv | |- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> prod_ m e. C ( ( n e. C |-> D ) ` m ) = prod_ m e. C ( ( k e. A |-> B ) ` ( F ` m ) ) ) |
| 68 | fveq2 | |- ( m = ( ( F o. f ) ` n ) -> ( ( k e. A |-> B ) ` m ) = ( ( k e. A |-> B ) ` ( ( F o. f ) ` n ) ) ) |
|
| 69 | 29 | adantr | |- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> ( k e. A |-> B ) : A --> CC ) |
| 70 | 69 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ m e. A ) -> ( ( k e. A |-> B ) ` m ) e. CC ) |
| 71 | 68 24 35 70 39 | fprod | |- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> prod_ m e. A ( ( k e. A |-> B ) ` m ) = ( seq 1 ( x. , ( ( k e. A |-> B ) o. ( F o. f ) ) ) ` ( # ` C ) ) ) |
| 72 | 47 67 71 | 3eqtr4rd | |- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> prod_ m e. A ( ( k e. A |-> B ) ` m ) = prod_ m e. C ( ( n e. C |-> D ) ` m ) ) |
| 73 | prodfc | |- prod_ m e. A ( ( k e. A |-> B ) ` m ) = prod_ k e. A B |
|
| 74 | prodfc | |- prod_ m e. C ( ( n e. C |-> D ) ` m ) = prod_ n e. C D |
|
| 75 | 72 73 74 | 3eqtr3g | |- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> prod_ k e. A B = prod_ n e. C D ) |
| 76 | 75 | expr | |- ( ( ph /\ ( # ` C ) e. NN ) -> ( f : ( 1 ... ( # ` C ) ) -1-1-onto-> C -> prod_ k e. A B = prod_ n e. C D ) ) |
| 77 | 76 | exlimdv | |- ( ( ph /\ ( # ` C ) e. NN ) -> ( E. f f : ( 1 ... ( # ` C ) ) -1-1-onto-> C -> prod_ k e. A B = prod_ n e. C D ) ) |
| 78 | 77 | expimpd | |- ( ph -> ( ( ( # ` C ) e. NN /\ E. f f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) -> prod_ k e. A B = prod_ n e. C D ) ) |
| 79 | fz1f1o | |- ( C e. Fin -> ( C = (/) \/ ( ( # ` C ) e. NN /\ E. f f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) ) |
|
| 80 | 2 79 | syl | |- ( ph -> ( C = (/) \/ ( ( # ` C ) e. NN /\ E. f f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) ) |
| 81 | 22 78 80 | mpjaod | |- ( ph -> prod_ k e. A B = prod_ n e. C D ) |