This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive integer exponentiation of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodexp.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| fprodexp.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| fprodexp.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprodexp.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | fprodexp | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodexp.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fprodexp.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 3 | fprodexp.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | fprodexp.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 5 | prodeq1 | ⊢ ( 𝑥 = ∅ → ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ∏ 𝑘 ∈ ∅ ( 𝐵 ↑ 𝑁 ) ) | |
| 6 | prodeq1 | ⊢ ( 𝑥 = ∅ → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝑥 = ∅ → ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ ∅ 𝐵 ↑ 𝑁 ) ) |
| 8 | 5 7 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) ↔ ∏ 𝑘 ∈ ∅ ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ ∅ 𝐵 ↑ 𝑁 ) ) ) |
| 9 | prodeq1 | ⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) ) | |
| 10 | prodeq1 | ⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ 𝑦 𝐵 ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) ↔ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) ) |
| 13 | prodeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) ) | |
| 14 | prodeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) | |
| 15 | 14 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↑ 𝑁 ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) ↔ ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↑ 𝑁 ) ) ) |
| 17 | prodeq1 | ⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ∏ 𝑘 ∈ 𝐴 ( 𝐵 ↑ 𝑁 ) ) | |
| 18 | prodeq1 | ⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐵 ) | |
| 19 | 18 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 ↑ 𝑁 ) ) |
| 20 | 17 19 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ∏ 𝑘 ∈ 𝑥 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑥 𝐵 ↑ 𝑁 ) ↔ ∏ 𝑘 ∈ 𝐴 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 ↑ 𝑁 ) ) ) |
| 21 | 2 | nn0zd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 22 | 1exp | ⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 ) | |
| 23 | 21 22 | syl | ⊢ ( 𝜑 → ( 1 ↑ 𝑁 ) = 1 ) |
| 24 | 23 | eqcomd | ⊢ ( 𝜑 → 1 = ( 1 ↑ 𝑁 ) ) |
| 25 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ ( 𝐵 ↑ 𝑁 ) = 1 | |
| 26 | 25 | a1i | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ∅ ( 𝐵 ↑ 𝑁 ) = 1 ) |
| 27 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 | |
| 28 | 27 | oveq1i | ⊢ ( ∏ 𝑘 ∈ ∅ 𝐵 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) |
| 29 | 28 | a1i | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ∅ 𝐵 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) |
| 30 | 24 26 29 | 3eqtr4d | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ∅ ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ ∅ 𝐵 ↑ 𝑁 ) ) |
| 31 | nfv | ⊢ Ⅎ 𝑘 ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) | |
| 32 | 1 31 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) |
| 33 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
| 34 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ 𝐴 ) | |
| 35 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) | |
| 36 | 33 34 35 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) |
| 37 | 36 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑦 ∈ Fin ) |
| 38 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑦 ) → 𝜑 ) | |
| 39 | 34 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
| 40 | 38 39 4 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℂ ) |
| 41 | 40 | adantlrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℂ ) |
| 42 | 32 37 41 | fprodclf | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ 𝑦 𝐵 ∈ ℂ ) |
| 43 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝜑 ) | |
| 44 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) | |
| 45 | 44 | eldifad | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ 𝐴 ) |
| 46 | nfv | ⊢ Ⅎ 𝑘 𝑧 ∈ 𝐴 | |
| 47 | 1 46 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) |
| 48 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 | |
| 49 | 48 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 50 | 47 49 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 51 | eleq1w | ⊢ ( 𝑘 = 𝑧 → ( 𝑘 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 52 | 51 | anbi2d | ⊢ ( 𝑘 = 𝑧 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 53 | csbeq1a | ⊢ ( 𝑘 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) | |
| 54 | 53 | eleq1d | ⊢ ( 𝑘 = 𝑧 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 55 | 52 54 | imbi12d | ⊢ ( 𝑘 = 𝑧 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 56 | 50 55 4 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 57 | 43 45 56 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 58 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑁 ∈ ℕ0 ) |
| 59 | mulexp | ⊢ ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ∈ ℂ ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↑ 𝑁 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) | |
| 60 | 42 57 58 59 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↑ 𝑁 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) |
| 61 | 60 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↑ 𝑁 ) ) |
| 62 | 61 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↑ 𝑁 ) ) |
| 63 | nfcv | ⊢ Ⅎ 𝑘 ↑ | |
| 64 | nfcv | ⊢ Ⅎ 𝑘 𝑁 | |
| 65 | 48 63 64 | nfov | ⊢ Ⅎ 𝑘 ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) |
| 66 | 44 | eldifbd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 67 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑦 ) → 𝑁 ∈ ℕ0 ) |
| 68 | 40 67 | expcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑦 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℂ ) |
| 69 | 68 | adantlrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℂ ) |
| 70 | 53 | oveq1d | ⊢ ( 𝑘 = 𝑧 → ( 𝐵 ↑ 𝑁 ) = ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) |
| 71 | 57 58 | expcld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ∈ ℂ ) |
| 72 | 32 65 37 44 66 69 70 71 | fprodsplitsn | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) |
| 74 | oveq1 | ⊢ ( ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) → ( ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) | |
| 75 | 74 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) → ( ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) |
| 76 | 73 75 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) · ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) |
| 77 | 32 48 37 44 66 41 53 57 | fprodsplitsn | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 78 | 77 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 79 | 78 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↑ 𝑁 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↑ 𝑁 ) ) |
| 80 | 62 76 79 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↑ 𝑁 ) ) |
| 81 | 80 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ∏ 𝑘 ∈ 𝑦 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 ↑ 𝑁 ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↑ 𝑁 ) ) ) |
| 82 | 8 12 16 20 30 81 3 | findcard2d | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 ( 𝐵 ↑ 𝑁 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 ↑ 𝑁 ) ) |