This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a finite product . (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodabs2.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fprodabs2.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | fprodabs2 | ⊢ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ 𝐴 𝐵 ) = ∏ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodabs2.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fprodabs2.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | prodeq1 | ⊢ ( 𝑥 = ∅ → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) | |
| 4 | 3 | fveq2d | ⊢ ( 𝑥 = ∅ → ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ( abs ‘ ∏ 𝑘 ∈ ∅ 𝐵 ) ) |
| 5 | prodeq1 | ⊢ ( 𝑥 = ∅ → ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) = ∏ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) | |
| 6 | 4 5 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ↔ ( abs ‘ ∏ 𝑘 ∈ ∅ 𝐵 ) = ∏ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) ) |
| 7 | prodeq1 | ⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ 𝑦 𝐵 ) | |
| 8 | 7 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 9 | prodeq1 | ⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) | |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ↔ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) ) |
| 11 | prodeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) | |
| 12 | 11 | fveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ( abs ‘ ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) |
| 13 | prodeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( abs ‘ 𝐵 ) ) | |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ↔ ( abs ‘ ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( abs ‘ 𝐵 ) ) ) |
| 15 | prodeq1 | ⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐵 ) | |
| 16 | 15 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ( abs ‘ ∏ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 17 | prodeq1 | ⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) = ∏ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) | |
| 18 | 16 17 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( abs ‘ ∏ 𝑘 ∈ 𝑥 𝐵 ) = ∏ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ↔ ( abs ‘ ∏ 𝑘 ∈ 𝐴 𝐵 ) = ∏ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) ) |
| 19 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 20 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 | |
| 21 | 20 | fveq2i | ⊢ ( abs ‘ ∏ 𝑘 ∈ ∅ 𝐵 ) = ( abs ‘ 1 ) |
| 22 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) = 1 | |
| 23 | 19 21 22 | 3eqtr4i | ⊢ ( abs ‘ ∏ 𝑘 ∈ ∅ 𝐵 ) = ∏ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) |
| 24 | 23 | a1i | ⊢ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ∅ 𝐵 ) = ∏ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) |
| 25 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ( ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) | |
| 26 | nfv | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) | |
| 27 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 | |
| 28 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ 𝐴 ) | |
| 30 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) | |
| 31 | 28 29 30 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) |
| 32 | 31 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑦 ∈ Fin ) |
| 33 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) | |
| 34 | 33 | eldifbd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 35 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝜑 ) | |
| 36 | 29 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
| 37 | 36 | adantlrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
| 38 | 35 37 2 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℂ ) |
| 39 | csbeq1a | ⊢ ( 𝑘 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) | |
| 40 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝜑 ) | |
| 41 | 33 | eldifad | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ 𝐴 ) |
| 42 | nfv | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) | |
| 43 | 27 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 44 | 42 43 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 45 | eleq1w | ⊢ ( 𝑘 = 𝑧 → ( 𝑘 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 46 | 45 | anbi2d | ⊢ ( 𝑘 = 𝑧 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 47 | 39 | eleq1d | ⊢ ( 𝑘 = 𝑧 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 48 | 46 47 | imbi12d | ⊢ ( 𝑘 = 𝑧 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 49 | 44 48 2 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 50 | 40 41 49 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 51 | 26 27 32 33 34 38 39 50 | fprodsplitsn | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 52 | 51 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 53 | 52 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( abs ‘ ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 54 | 26 32 38 | fprodclf | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ 𝑦 𝐵 ∈ ℂ ) |
| 55 | 54 50 | absmuld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( abs ‘ ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 56 | 55 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ( abs ‘ ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 57 | oveq1 | ⊢ ( ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) → ( ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) | |
| 58 | 57 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ( ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 59 | 53 56 58 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 60 | nfcv | ⊢ Ⅎ 𝑘 abs | |
| 61 | 60 27 | nffv | ⊢ Ⅎ 𝑘 ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 62 | 38 | abscld | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 63 | 62 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → ( abs ‘ 𝐵 ) ∈ ℂ ) |
| 64 | 39 | fveq2d | ⊢ ( 𝑘 = 𝑧 → ( abs ‘ 𝐵 ) = ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 65 | 50 | abscld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 66 | 65 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℂ ) |
| 67 | 26 61 32 33 34 63 64 66 | fprodsplitsn | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( abs ‘ 𝐵 ) = ( ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 68 | 67 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( abs ‘ 𝐵 ) = ( ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) · ( abs ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 69 | 25 59 68 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( abs ‘ 𝐵 ) ) |
| 70 | 69 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( abs ‘ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ∏ 𝑘 ∈ 𝑦 ( abs ‘ 𝐵 ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( abs ‘ 𝐵 ) ) ) |
| 71 | 6 10 14 18 24 70 1 | findcard2d | ⊢ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ 𝐴 𝐵 ) = ∏ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) |