This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodeq0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| fprodeq0.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| fprodeq0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
| fprodeq0.4 | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑁 ) → 𝐴 = 0 ) | ||
| Assertion | fprodeq0 | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodeq0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | fprodeq0.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | fprodeq0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
| 4 | fprodeq0.4 | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑁 ) → 𝐴 = 0 ) | |
| 5 | eluzel2 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 7 | 6 | zred | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 8 | 7 | ltp1d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 < ( 𝑁 + 1 ) ) |
| 9 | fzdisj | ⊢ ( 𝑁 < ( 𝑁 + 1 ) → ( ( 𝑀 ... 𝑁 ) ∩ ( ( 𝑁 + 1 ) ... 𝐾 ) ) = ∅ ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑀 ... 𝑁 ) ∩ ( ( 𝑁 + 1 ) ... 𝐾 ) ) = ∅ ) |
| 11 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 12 | 11 1 | eleq2s | ⊢ ( 𝑁 ∈ 𝑍 → 𝑀 ∈ ℤ ) |
| 13 | 2 12 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℤ ) |
| 15 | eluzelz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝐾 ∈ ℤ ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐾 ∈ ℤ ) |
| 17 | 14 16 6 | 3jca | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 18 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) | |
| 19 | 18 1 | eleq2s | ⊢ ( 𝑁 ∈ 𝑍 → 𝑀 ≤ 𝑁 ) |
| 20 | 2 19 | syl | ⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
| 21 | eluzle | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝐾 ) | |
| 22 | 20 21 | anim12i | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾 ) ) |
| 23 | elfz2 | ⊢ ( 𝑁 ∈ ( 𝑀 ... 𝐾 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾 ) ) ) | |
| 24 | 17 22 23 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( 𝑀 ... 𝐾 ) ) |
| 25 | fzsplit | ⊢ ( 𝑁 ∈ ( 𝑀 ... 𝐾 ) → ( 𝑀 ... 𝐾 ) = ( ( 𝑀 ... 𝑁 ) ∪ ( ( 𝑁 + 1 ) ... 𝐾 ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑀 ... 𝐾 ) = ( ( 𝑀 ... 𝑁 ) ∪ ( ( 𝑁 + 1 ) ... 𝐾 ) ) ) |
| 27 | fzfid | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑀 ... 𝐾 ) ∈ Fin ) | |
| 28 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝐾 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 29 | 28 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝐾 ) → 𝑘 ∈ 𝑍 ) |
| 30 | 29 3 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝐾 ) ) → 𝐴 ∈ ℂ ) |
| 31 | 30 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝐾 ) ) → 𝐴 ∈ ℂ ) |
| 32 | 10 26 27 31 | fprodsplit | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 · ∏ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) 𝐴 ) ) |
| 33 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 34 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 35 | 34 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ 𝑍 ) |
| 36 | 35 3 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 37 | 33 36 | fprodm1s | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 · ⦋ 𝑁 / 𝑘 ⦌ 𝐴 ) ) |
| 38 | 2 4 | csbied | ⊢ ( 𝜑 → ⦋ 𝑁 / 𝑘 ⦌ 𝐴 = 0 ) |
| 39 | 38 | oveq2d | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 · ⦋ 𝑁 / 𝑘 ⦌ 𝐴 ) = ( ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 · 0 ) ) |
| 40 | fzfid | ⊢ ( 𝜑 → ( 𝑀 ... ( 𝑁 − 1 ) ) ∈ Fin ) | |
| 41 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 42 | 41 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ 𝑍 ) |
| 43 | 42 3 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 44 | 40 43 | fprodcl | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 ∈ ℂ ) |
| 45 | 44 | mul01d | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 · 0 ) = 0 ) |
| 46 | 37 39 45 | 3eqtrd | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = 0 ) |
| 47 | 46 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = 0 ) |
| 48 | 47 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 · ∏ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) 𝐴 ) = ( 0 · ∏ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) 𝐴 ) ) |
| 49 | fzfid | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑁 + 1 ) ... 𝐾 ) ∈ Fin ) | |
| 50 | 1 | peano2uzs | ⊢ ( 𝑁 ∈ 𝑍 → ( 𝑁 + 1 ) ∈ 𝑍 ) |
| 51 | 2 50 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ 𝑍 ) |
| 52 | elfzuz | ⊢ ( 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) | |
| 53 | 1 | uztrn2 | ⊢ ( ( ( 𝑁 + 1 ) ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 54 | 51 52 53 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) ) → 𝑘 ∈ 𝑍 ) |
| 55 | 54 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 56 | 55 3 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) ) ) → 𝐴 ∈ ℂ ) |
| 57 | 56 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) ) → 𝐴 ∈ ℂ ) |
| 58 | 49 57 | fprodcl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∏ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) 𝐴 ∈ ℂ ) |
| 59 | 58 | mul02d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 0 · ∏ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) 𝐴 ) = 0 ) |
| 60 | 32 48 59 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 = 0 ) |