This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodm1s.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| fprodm1s.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | ||
| Assertion | fprodm1s | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 · ⦋ 𝑁 / 𝑘 ⦌ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodm1s.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | fprodm1s.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| 3 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ ) |
| 4 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐴 | |
| 5 | 4 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐴 ∈ ℂ |
| 6 | csbeq1a | ⊢ ( 𝑘 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑘 ⦌ 𝐴 ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑚 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 8 | 5 7 | rspc | ⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ → ⦋ 𝑚 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 9 | 3 8 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 10 | csbeq1 | ⊢ ( 𝑚 = 𝑁 → ⦋ 𝑚 / 𝑘 ⦌ 𝐴 = ⦋ 𝑁 / 𝑘 ⦌ 𝐴 ) | |
| 11 | 1 9 10 | fprodm1 | ⊢ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑚 / 𝑘 ⦌ 𝐴 = ( ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ⦋ 𝑚 / 𝑘 ⦌ 𝐴 · ⦋ 𝑁 / 𝑘 ⦌ 𝐴 ) ) |
| 12 | nfcv | ⊢ Ⅎ 𝑚 𝐴 | |
| 13 | 12 4 6 | cbvprodi | ⊢ ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑚 / 𝑘 ⦌ 𝐴 |
| 14 | 12 4 6 | cbvprodi | ⊢ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 = ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ⦋ 𝑚 / 𝑘 ⦌ 𝐴 |
| 15 | 14 | oveq1i | ⊢ ( ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 · ⦋ 𝑁 / 𝑘 ⦌ 𝐴 ) = ( ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ⦋ 𝑚 / 𝑘 ⦌ 𝐴 · ⦋ 𝑁 / 𝑘 ⦌ 𝐴 ) |
| 16 | 11 13 15 | 3eqtr4g | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 · ⦋ 𝑁 / 𝑘 ⦌ 𝐴 ) ) |