This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015) (Revised by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnsuppres | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐹 supp 𝑍 ) ⊆ 𝐴 ↔ ( 𝐹 ↾ 𝐵 ) = ( 𝐵 × { 𝑍 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndm | ⊢ ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) → dom 𝐹 = ( 𝐴 ∪ 𝐵 ) ) | |
| 2 | 1 | rabeqdv | ⊢ ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) → { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } = { 𝑎 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } = { 𝑎 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) |
| 4 | 3 | sseq1d | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ { 𝑎 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ) ) |
| 5 | unss | ⊢ ( ( { 𝑎 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ∧ { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ) ↔ ( { 𝑎 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ∪ { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) ⊆ 𝐴 ) | |
| 6 | ssrab2 | ⊢ { 𝑎 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 | |
| 7 | 6 | biantrur | ⊢ ( { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ ( { 𝑎 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ∧ { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ) ) |
| 8 | rabun2 | ⊢ { 𝑎 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } = ( { 𝑎 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ∪ { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) | |
| 9 | 8 | sseq1i | ⊢ ( { 𝑎 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ ( { 𝑎 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ∪ { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) ⊆ 𝐴 ) |
| 10 | 5 7 9 | 3bitr4ri | ⊢ ( { 𝑎 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ) |
| 11 | rabss | ⊢ ( { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 → 𝑎 ∈ 𝐴 ) ) | |
| 12 | fvres | ⊢ ( 𝑎 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) | |
| 13 | 12 | adantl | ⊢ ( ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 14 | simp2r | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝑍 ∈ 𝑉 ) | |
| 15 | fvconst2g | ⊢ ( ( 𝑍 ∈ 𝑉 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) = 𝑍 ) | |
| 16 | 14 15 | sylan | ⊢ ( ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) = 𝑍 ) |
| 17 | 13 16 | eqeq12d | ⊢ ( ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑎 ) = 𝑍 ) ) |
| 18 | nne | ⊢ ( ¬ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑍 ) | |
| 19 | 18 | a1i | ⊢ ( ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐵 ) → ( ¬ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑍 ) ) |
| 20 | id | ⊢ ( 𝑎 ∈ 𝐵 → 𝑎 ∈ 𝐵 ) | |
| 21 | simp3 | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) | |
| 22 | minel | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ¬ 𝑎 ∈ 𝐴 ) | |
| 23 | 20 21 22 | syl2anr | ⊢ ( ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐵 ) → ¬ 𝑎 ∈ 𝐴 ) |
| 24 | mtt | ⊢ ( ¬ 𝑎 ∈ 𝐴 → ( ¬ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 ↔ ( ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 → 𝑎 ∈ 𝐴 ) ) ) | |
| 25 | 23 24 | syl | ⊢ ( ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐵 ) → ( ¬ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 ↔ ( ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 → 𝑎 ∈ 𝐴 ) ) ) |
| 26 | 17 19 25 | 3bitr2rd | ⊢ ( ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 → 𝑎 ∈ 𝐴 ) ↔ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ) ) |
| 27 | 26 | ralbidva | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 → 𝑎 ∈ 𝐴 ) ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ) ) |
| 28 | 11 27 | bitrid | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ) ) |
| 29 | 10 28 | bitrid | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( { 𝑎 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ) ) |
| 30 | 4 29 | bitrd | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ) ) |
| 31 | fnfun | ⊢ ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) → Fun 𝐹 ) | |
| 32 | 31 | 3anim1i | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) → ( Fun 𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ) |
| 33 | 32 | 3expb | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ) → ( Fun 𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ) |
| 34 | suppval1 | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) = { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ) → ( 𝐹 supp 𝑍 ) = { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) |
| 36 | 35 | 3adant3 | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐹 supp 𝑍 ) = { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) |
| 37 | 36 | sseq1d | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐹 supp 𝑍 ) ⊆ 𝐴 ↔ { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ) ) |
| 38 | simp1 | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ) | |
| 39 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 40 | 39 | a1i | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 41 | fnssres | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) → ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ) | |
| 42 | 38 40 41 | syl2anc | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ) |
| 43 | fnconstg | ⊢ ( 𝑍 ∈ 𝑉 → ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) | |
| 44 | 43 | adantl | ⊢ ( ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) → ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) |
| 45 | 44 | 3ad2ant2 | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) |
| 46 | eqfnfv | ⊢ ( ( ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ∧ ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) = ( 𝐵 × { 𝑍 } ) ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ) ) | |
| 47 | 42 45 46 | syl2anc | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐹 ↾ 𝐵 ) = ( 𝐵 × { 𝑍 } ) ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ) ) |
| 48 | 30 37 47 | 3bitr4d | ⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐹 supp 𝑍 ) ⊆ 𝐴 ↔ ( 𝐹 ↾ 𝐵 ) = ( 𝐵 × { 𝑍 } ) ) ) |