This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015) (Revised by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnsuppres | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( ( F supp Z ) C_ A <-> ( F |` B ) = ( B X. { Z } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndm | |- ( F Fn ( A u. B ) -> dom F = ( A u. B ) ) |
|
| 2 | 1 | rabeqdv | |- ( F Fn ( A u. B ) -> { a e. dom F | ( F ` a ) =/= Z } = { a e. ( A u. B ) | ( F ` a ) =/= Z } ) |
| 3 | 2 | 3ad2ant1 | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> { a e. dom F | ( F ` a ) =/= Z } = { a e. ( A u. B ) | ( F ` a ) =/= Z } ) |
| 4 | 3 | sseq1d | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( { a e. dom F | ( F ` a ) =/= Z } C_ A <-> { a e. ( A u. B ) | ( F ` a ) =/= Z } C_ A ) ) |
| 5 | unss | |- ( ( { a e. A | ( F ` a ) =/= Z } C_ A /\ { a e. B | ( F ` a ) =/= Z } C_ A ) <-> ( { a e. A | ( F ` a ) =/= Z } u. { a e. B | ( F ` a ) =/= Z } ) C_ A ) |
|
| 6 | ssrab2 | |- { a e. A | ( F ` a ) =/= Z } C_ A |
|
| 7 | 6 | biantrur | |- ( { a e. B | ( F ` a ) =/= Z } C_ A <-> ( { a e. A | ( F ` a ) =/= Z } C_ A /\ { a e. B | ( F ` a ) =/= Z } C_ A ) ) |
| 8 | rabun2 | |- { a e. ( A u. B ) | ( F ` a ) =/= Z } = ( { a e. A | ( F ` a ) =/= Z } u. { a e. B | ( F ` a ) =/= Z } ) |
|
| 9 | 8 | sseq1i | |- ( { a e. ( A u. B ) | ( F ` a ) =/= Z } C_ A <-> ( { a e. A | ( F ` a ) =/= Z } u. { a e. B | ( F ` a ) =/= Z } ) C_ A ) |
| 10 | 5 7 9 | 3bitr4ri | |- ( { a e. ( A u. B ) | ( F ` a ) =/= Z } C_ A <-> { a e. B | ( F ` a ) =/= Z } C_ A ) |
| 11 | rabss | |- ( { a e. B | ( F ` a ) =/= Z } C_ A <-> A. a e. B ( ( F ` a ) =/= Z -> a e. A ) ) |
|
| 12 | fvres | |- ( a e. B -> ( ( F |` B ) ` a ) = ( F ` a ) ) |
|
| 13 | 12 | adantl | |- ( ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) /\ a e. B ) -> ( ( F |` B ) ` a ) = ( F ` a ) ) |
| 14 | simp2r | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> Z e. V ) |
|
| 15 | fvconst2g | |- ( ( Z e. V /\ a e. B ) -> ( ( B X. { Z } ) ` a ) = Z ) |
|
| 16 | 14 15 | sylan | |- ( ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) /\ a e. B ) -> ( ( B X. { Z } ) ` a ) = Z ) |
| 17 | 13 16 | eqeq12d | |- ( ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) /\ a e. B ) -> ( ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) <-> ( F ` a ) = Z ) ) |
| 18 | nne | |- ( -. ( F ` a ) =/= Z <-> ( F ` a ) = Z ) |
|
| 19 | 18 | a1i | |- ( ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) /\ a e. B ) -> ( -. ( F ` a ) =/= Z <-> ( F ` a ) = Z ) ) |
| 20 | id | |- ( a e. B -> a e. B ) |
|
| 21 | simp3 | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( A i^i B ) = (/) ) |
|
| 22 | minel | |- ( ( a e. B /\ ( A i^i B ) = (/) ) -> -. a e. A ) |
|
| 23 | 20 21 22 | syl2anr | |- ( ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) /\ a e. B ) -> -. a e. A ) |
| 24 | mtt | |- ( -. a e. A -> ( -. ( F ` a ) =/= Z <-> ( ( F ` a ) =/= Z -> a e. A ) ) ) |
|
| 25 | 23 24 | syl | |- ( ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) /\ a e. B ) -> ( -. ( F ` a ) =/= Z <-> ( ( F ` a ) =/= Z -> a e. A ) ) ) |
| 26 | 17 19 25 | 3bitr2rd | |- ( ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) /\ a e. B ) -> ( ( ( F ` a ) =/= Z -> a e. A ) <-> ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) ) ) |
| 27 | 26 | ralbidva | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( A. a e. B ( ( F ` a ) =/= Z -> a e. A ) <-> A. a e. B ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) ) ) |
| 28 | 11 27 | bitrid | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( { a e. B | ( F ` a ) =/= Z } C_ A <-> A. a e. B ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) ) ) |
| 29 | 10 28 | bitrid | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( { a e. ( A u. B ) | ( F ` a ) =/= Z } C_ A <-> A. a e. B ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) ) ) |
| 30 | 4 29 | bitrd | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( { a e. dom F | ( F ` a ) =/= Z } C_ A <-> A. a e. B ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) ) ) |
| 31 | fnfun | |- ( F Fn ( A u. B ) -> Fun F ) |
|
| 32 | 31 | 3anim1i | |- ( ( F Fn ( A u. B ) /\ F e. W /\ Z e. V ) -> ( Fun F /\ F e. W /\ Z e. V ) ) |
| 33 | 32 | 3expb | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) ) -> ( Fun F /\ F e. W /\ Z e. V ) ) |
| 34 | suppval1 | |- ( ( Fun F /\ F e. W /\ Z e. V ) -> ( F supp Z ) = { a e. dom F | ( F ` a ) =/= Z } ) |
|
| 35 | 33 34 | syl | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) ) -> ( F supp Z ) = { a e. dom F | ( F ` a ) =/= Z } ) |
| 36 | 35 | 3adant3 | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( F supp Z ) = { a e. dom F | ( F ` a ) =/= Z } ) |
| 37 | 36 | sseq1d | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( ( F supp Z ) C_ A <-> { a e. dom F | ( F ` a ) =/= Z } C_ A ) ) |
| 38 | simp1 | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> F Fn ( A u. B ) ) |
|
| 39 | ssun2 | |- B C_ ( A u. B ) |
|
| 40 | 39 | a1i | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> B C_ ( A u. B ) ) |
| 41 | fnssres | |- ( ( F Fn ( A u. B ) /\ B C_ ( A u. B ) ) -> ( F |` B ) Fn B ) |
|
| 42 | 38 40 41 | syl2anc | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( F |` B ) Fn B ) |
| 43 | fnconstg | |- ( Z e. V -> ( B X. { Z } ) Fn B ) |
|
| 44 | 43 | adantl | |- ( ( F e. W /\ Z e. V ) -> ( B X. { Z } ) Fn B ) |
| 45 | 44 | 3ad2ant2 | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( B X. { Z } ) Fn B ) |
| 46 | eqfnfv | |- ( ( ( F |` B ) Fn B /\ ( B X. { Z } ) Fn B ) -> ( ( F |` B ) = ( B X. { Z } ) <-> A. a e. B ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) ) ) |
|
| 47 | 42 45 46 | syl2anc | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( ( F |` B ) = ( B X. { Z } ) <-> A. a e. B ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) ) ) |
| 48 | 30 37 47 | 3bitr4d | |- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( ( F supp Z ) C_ A <-> ( F |` B ) = ( B X. { Z } ) ) ) |