This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppval1 | ⊢ ( ( Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑋 supp 𝑍 ) = { 𝑖 ∈ dom 𝑋 ∣ ( 𝑋 ‘ 𝑖 ) ≠ 𝑍 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppval | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑋 supp 𝑍 ) = { 𝑖 ∈ dom 𝑋 ∣ ( 𝑋 “ { 𝑖 } ) ≠ { 𝑍 } } ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑋 supp 𝑍 ) = { 𝑖 ∈ dom 𝑋 ∣ ( 𝑋 “ { 𝑖 } ) ≠ { 𝑍 } } ) |
| 3 | funfn | ⊢ ( Fun 𝑋 ↔ 𝑋 Fn dom 𝑋 ) | |
| 4 | 3 | biimpi | ⊢ ( Fun 𝑋 → 𝑋 Fn dom 𝑋 ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → 𝑋 Fn dom 𝑋 ) |
| 6 | fnsnfv | ⊢ ( ( 𝑋 Fn dom 𝑋 ∧ 𝑖 ∈ dom 𝑋 ) → { ( 𝑋 ‘ 𝑖 ) } = ( 𝑋 “ { 𝑖 } ) ) | |
| 7 | 5 6 | sylan | ⊢ ( ( ( Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑖 ∈ dom 𝑋 ) → { ( 𝑋 ‘ 𝑖 ) } = ( 𝑋 “ { 𝑖 } ) ) |
| 8 | 7 | eqcomd | ⊢ ( ( ( Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑖 ∈ dom 𝑋 ) → ( 𝑋 “ { 𝑖 } ) = { ( 𝑋 ‘ 𝑖 ) } ) |
| 9 | 8 | neeq1d | ⊢ ( ( ( Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑖 ∈ dom 𝑋 ) → ( ( 𝑋 “ { 𝑖 } ) ≠ { 𝑍 } ↔ { ( 𝑋 ‘ 𝑖 ) } ≠ { 𝑍 } ) ) |
| 10 | fvex | ⊢ ( 𝑋 ‘ 𝑖 ) ∈ V | |
| 11 | sneqbg | ⊢ ( ( 𝑋 ‘ 𝑖 ) ∈ V → ( { ( 𝑋 ‘ 𝑖 ) } = { 𝑍 } ↔ ( 𝑋 ‘ 𝑖 ) = 𝑍 ) ) | |
| 12 | 10 11 | mp1i | ⊢ ( ( ( Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑖 ∈ dom 𝑋 ) → ( { ( 𝑋 ‘ 𝑖 ) } = { 𝑍 } ↔ ( 𝑋 ‘ 𝑖 ) = 𝑍 ) ) |
| 13 | 12 | necon3bid | ⊢ ( ( ( Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑖 ∈ dom 𝑋 ) → ( { ( 𝑋 ‘ 𝑖 ) } ≠ { 𝑍 } ↔ ( 𝑋 ‘ 𝑖 ) ≠ 𝑍 ) ) |
| 14 | 9 13 | bitrd | ⊢ ( ( ( Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑖 ∈ dom 𝑋 ) → ( ( 𝑋 “ { 𝑖 } ) ≠ { 𝑍 } ↔ ( 𝑋 ‘ 𝑖 ) ≠ 𝑍 ) ) |
| 15 | 14 | rabbidva | ⊢ ( ( Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑖 ∈ dom 𝑋 ∣ ( 𝑋 “ { 𝑖 } ) ≠ { 𝑍 } } = { 𝑖 ∈ dom 𝑋 ∣ ( 𝑋 ‘ 𝑖 ) ≠ 𝑍 } ) |
| 16 | 2 15 | eqtrd | ⊢ ( ( Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑋 supp 𝑍 ) = { 𝑖 ∈ dom 𝑋 ∣ ( 𝑋 ‘ 𝑖 ) ≠ 𝑍 } ) |