This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image R is a function over the set-like portion of R . (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnimage | |- Image R Fn { x | ( R " x ) e. _V } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimage | |- Fun Image R |
|
| 2 | vex | |- y e. _V |
|
| 3 | vex | |- x e. _V |
|
| 4 | 2 3 | brimage | |- ( y Image R x <-> x = ( R " y ) ) |
| 5 | eqvisset | |- ( x = ( R " y ) -> ( R " y ) e. _V ) |
|
| 6 | 4 5 | sylbi | |- ( y Image R x -> ( R " y ) e. _V ) |
| 7 | 6 | exlimiv | |- ( E. x y Image R x -> ( R " y ) e. _V ) |
| 8 | eqid | |- ( R " y ) = ( R " y ) |
|
| 9 | brimageg | |- ( ( y e. _V /\ ( R " y ) e. _V ) -> ( y Image R ( R " y ) <-> ( R " y ) = ( R " y ) ) ) |
|
| 10 | 2 9 | mpan | |- ( ( R " y ) e. _V -> ( y Image R ( R " y ) <-> ( R " y ) = ( R " y ) ) ) |
| 11 | 8 10 | mpbiri | |- ( ( R " y ) e. _V -> y Image R ( R " y ) ) |
| 12 | breq2 | |- ( x = ( R " y ) -> ( y Image R x <-> y Image R ( R " y ) ) ) |
|
| 13 | 12 | spcegv | |- ( ( R " y ) e. _V -> ( y Image R ( R " y ) -> E. x y Image R x ) ) |
| 14 | 11 13 | mpd | |- ( ( R " y ) e. _V -> E. x y Image R x ) |
| 15 | 7 14 | impbii | |- ( E. x y Image R x <-> ( R " y ) e. _V ) |
| 16 | 2 | eldm | |- ( y e. dom Image R <-> E. x y Image R x ) |
| 17 | imaeq2 | |- ( x = y -> ( R " x ) = ( R " y ) ) |
|
| 18 | 17 | eleq1d | |- ( x = y -> ( ( R " x ) e. _V <-> ( R " y ) e. _V ) ) |
| 19 | 2 18 | elab | |- ( y e. { x | ( R " x ) e. _V } <-> ( R " y ) e. _V ) |
| 20 | 15 16 19 | 3bitr4i | |- ( y e. dom Image R <-> y e. { x | ( R " x ) e. _V } ) |
| 21 | 20 | eqriv | |- dom Image R = { x | ( R " x ) e. _V } |
| 22 | df-fn | |- ( Image R Fn { x | ( R " x ) e. _V } <-> ( Fun Image R /\ dom Image R = { x | ( R " x ) e. _V } ) ) |
|
| 23 | 1 21 22 | mpbir2an | |- Image R Fn { x | ( R " x ) e. _V } |