This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write a double restricted quantification as one universal quantifier. In this version of ralxp , B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralxp.1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | raliunxp | ⊢ ( ∀ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxp.1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | eliunxp | ⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ) | |
| 3 | 2 | imbi1i | ⊢ ( ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) → 𝜑 ) ↔ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ) |
| 4 | 19.23vv | ⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ↔ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ) | |
| 5 | 3 4 | bitr4i | ⊢ ( ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) → 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ) |
| 7 | alrot3 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑧 ∀ 𝑥 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ) | |
| 8 | impexp | ⊢ ( ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜑 ) ) ) | |
| 9 | 8 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜑 ) ) ) |
| 10 | opex | ⊢ 〈 𝑦 , 𝑧 〉 ∈ V | |
| 11 | 1 | imbi2d | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜑 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜓 ) ) ) |
| 12 | 10 11 | ceqsalv | ⊢ ( ∀ 𝑥 ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜑 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜓 ) ) |
| 13 | 9 12 | bitri | ⊢ ( ∀ 𝑥 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜓 ) ) |
| 14 | 13 | 2albii | ⊢ ( ∀ 𝑦 ∀ 𝑧 ∀ 𝑥 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜓 ) ) |
| 15 | 7 14 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜓 ) ) |
| 16 | 6 15 | bitri | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜓 ) ) |
| 17 | df-ral | ⊢ ( ∀ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) → 𝜑 ) ) | |
| 18 | r2al | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜓 ) ) | |
| 19 | 16 17 18 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 𝜓 ) |