This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cauchy filter condition for a filter base. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fgcfil | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfili | ⊢ ( ( ( 𝑋 filGen 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑢 ∈ ( 𝑋 filGen 𝐵 ) ∀ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑢 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) | |
| 2 | 1 | adantll | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ ( 𝑋 filGen 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑢 ∈ ( 𝑋 filGen 𝐵 ) ∀ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑢 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) |
| 3 | elfg | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑢 ∈ ( 𝑋 filGen 𝐵 ) ↔ ( 𝑢 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑢 ) ) ) | |
| 4 | 3 | ad3antlr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ ( 𝑋 filGen 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑢 ∈ ( 𝑋 filGen 𝐵 ) ↔ ( 𝑢 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑢 ) ) ) |
| 5 | ssralv | ⊢ ( 𝑦 ⊆ 𝑢 → ( ∀ 𝑤 ∈ 𝑢 ( 𝑧 𝐷 𝑤 ) < 𝑥 → ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) | |
| 6 | 5 | ralimdv | ⊢ ( 𝑦 ⊆ 𝑢 → ( ∀ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑢 ( 𝑧 𝐷 𝑤 ) < 𝑥 → ∀ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 7 | ssralv | ⊢ ( 𝑦 ⊆ 𝑢 → ( ∀ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 → ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) | |
| 8 | 6 7 | syldc | ⊢ ( ∀ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑢 ( 𝑧 𝐷 𝑤 ) < 𝑥 → ( 𝑦 ⊆ 𝑢 → ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 9 | 8 | reximdv | ⊢ ( ∀ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑢 ( 𝑧 𝐷 𝑤 ) < 𝑥 → ( ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑢 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 10 | 9 | com12 | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑢 → ( ∀ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑢 ( 𝑧 𝐷 𝑤 ) < 𝑥 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑢 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑢 ) → ( ∀ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑢 ( 𝑧 𝐷 𝑤 ) < 𝑥 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 12 | 4 11 | biimtrdi | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ ( 𝑋 filGen 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑢 ∈ ( 𝑋 filGen 𝐵 ) → ( ∀ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑢 ( 𝑧 𝐷 𝑤 ) < 𝑥 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) ) |
| 13 | 12 | rexlimdv | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ ( 𝑋 filGen 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑢 ∈ ( 𝑋 filGen 𝐵 ) ∀ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑢 ( 𝑧 𝐷 𝑤 ) < 𝑥 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 14 | 2 13 | mpd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ ( 𝑋 filGen 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) |
| 15 | 14 | ralrimiva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ ( 𝑋 filGen 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) |
| 16 | 15 | ex | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 17 | ssfg | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → 𝐵 ⊆ ( 𝑋 filGen 𝐵 ) ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → 𝐵 ⊆ ( 𝑋 filGen 𝐵 ) ) |
| 19 | ssrexv | ⊢ ( 𝐵 ⊆ ( 𝑋 filGen 𝐵 ) → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 → ∃ 𝑦 ∈ ( 𝑋 filGen 𝐵 ) ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) | |
| 20 | 19 | ralimdv | ⊢ ( 𝐵 ⊆ ( 𝑋 filGen 𝐵 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝑋 filGen 𝐵 ) ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 21 | 18 20 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝑋 filGen 𝐵 ) ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 22 | fgcl | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐵 ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 23 | 22 | adantl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝑋 filGen 𝐵 ) ∈ ( Fil ‘ 𝑋 ) ) |
| 24 | 21 23 | jctild | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 → ( ( 𝑋 filGen 𝐵 ) ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝑋 filGen 𝐵 ) ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) ) |
| 25 | iscfil2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝑋 filGen 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ↔ ( ( 𝑋 filGen 𝐵 ) ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝑋 filGen 𝐵 ) ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ↔ ( ( 𝑋 filGen 𝐵 ) ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝑋 filGen 𝐵 ) ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) ) |
| 27 | 24 26 | sylibrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 → ( 𝑋 filGen 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ) ) |
| 28 | 16 27 | impbid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |