This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function's value is always in the trace of its filter limit. (Contributed by Thierry Arnoux, 30-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flfcntr.c | ⊢ 𝐶 = ∪ 𝐽 | |
| flfcntr.b | ⊢ 𝐵 = ∪ 𝐾 | ||
| flfcntr.j | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | ||
| flfcntr.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | ||
| flfcntr.1 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) | ||
| flfcntr.y | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| Assertion | flfcntr | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flfcntr.c | ⊢ 𝐶 = ∪ 𝐽 | |
| 2 | flfcntr.b | ⊢ 𝐵 = ∪ 𝐾 | |
| 3 | flfcntr.j | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | |
| 4 | flfcntr.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | |
| 5 | flfcntr.1 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) | |
| 6 | flfcntr.y | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 7 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ↔ ( 𝐹 ‘ 𝑋 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑎 = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) → ( ( 𝐽 ↾t 𝐴 ) fLim 𝑎 ) = ( ( 𝐽 ↾t 𝐴 ) fLim ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ) | |
| 10 | oveq2 | ⊢ ( 𝑎 = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) → ( 𝐾 fLimf 𝑎 ) = ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ) | |
| 11 | 10 | fveq1d | ⊢ ( 𝑎 = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) → ( ( 𝐾 fLimf 𝑎 ) ‘ 𝐹 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 12 | 11 | eleq2d | ⊢ ( 𝑎 = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑎 ) ‘ 𝐹 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 13 | 9 12 | raleqbidv | ⊢ ( 𝑎 = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) → ( ∀ 𝑥 ∈ ( ( 𝐽 ↾t 𝐴 ) fLim 𝑎 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑎 ) ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( ( 𝐽 ↾t 𝐴 ) fLim ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 14 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 15 | 3 14 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 16 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐶 ) ∧ 𝐴 ⊆ 𝐶 ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) | |
| 17 | 15 4 16 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 18 | cntop2 | ⊢ ( 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 19 | 5 18 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 20 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 21 | 19 20 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 22 | cnflf | ⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → ( 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ ( Fil ‘ 𝐴 ) ∀ 𝑥 ∈ ( ( 𝐽 ↾t 𝐴 ) fLim 𝑎 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑎 ) ‘ 𝐹 ) ) ) ) | |
| 23 | 17 21 22 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ ( Fil ‘ 𝐴 ) ∀ 𝑥 ∈ ( ( 𝐽 ↾t 𝐴 ) fLim 𝑎 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑎 ) ‘ 𝐹 ) ) ) ) |
| 24 | 5 23 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ ( Fil ‘ 𝐴 ) ∀ 𝑥 ∈ ( ( 𝐽 ↾t 𝐴 ) fLim 𝑎 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑎 ) ‘ 𝐹 ) ) ) |
| 25 | 24 | simprd | ⊢ ( 𝜑 → ∀ 𝑎 ∈ ( Fil ‘ 𝐴 ) ∀ 𝑥 ∈ ( ( 𝐽 ↾t 𝐴 ) fLim 𝑎 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑎 ) ‘ 𝐹 ) ) |
| 26 | 1 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶 ) → 𝐴 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 27 | 3 4 26 | syl2anc | ⊢ ( 𝜑 → 𝐴 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 28 | 27 6 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 29 | 4 6 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) |
| 30 | trnei | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐶 ) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) | |
| 31 | 15 4 29 30 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) |
| 32 | 28 31 | mpbid | ⊢ ( 𝜑 → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
| 33 | 13 25 32 | rspcdva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝐽 ↾t 𝐴 ) fLim ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 34 | neiflim | ⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ ( ( 𝐽 ↾t 𝐴 ) fLim ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑋 } ) ) ) | |
| 35 | 17 6 34 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ ( ( 𝐽 ↾t 𝐴 ) fLim ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑋 } ) ) ) |
| 36 | 6 | snssd | ⊢ ( 𝜑 → { 𝑋 } ⊆ 𝐴 ) |
| 37 | 1 | neitr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶 ∧ { 𝑋 } ⊆ 𝐴 ) → ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑋 } ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) |
| 38 | 3 4 36 37 | syl3anc | ⊢ ( 𝜑 → ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑋 } ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) |
| 39 | 38 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐽 ↾t 𝐴 ) fLim ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑋 } ) ) = ( ( 𝐽 ↾t 𝐴 ) fLim ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ) |
| 40 | 35 39 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( ( 𝐽 ↾t 𝐴 ) fLim ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ) |
| 41 | 8 33 40 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |