This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point is a limit point of its neighborhood filter. (Contributed by Jeff Hankins, 7-Sep-2009) (Revised by Stefan O'Rear, 9-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | neiflim | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ( 𝐽 fLim ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) | |
| 2 | 1 | jctr | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 3 | 2 | adantl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 4 | simpl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 5 | snssi | ⊢ ( 𝐴 ∈ 𝑋 → { 𝐴 } ⊆ 𝑋 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → { 𝐴 } ⊆ 𝑋 ) |
| 7 | snnzg | ⊢ ( 𝐴 ∈ 𝑋 → { 𝐴 } ≠ ∅ ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → { 𝐴 } ≠ ∅ ) |
| 9 | neifil | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ { 𝐴 } ⊆ 𝑋 ∧ { 𝐴 } ≠ ∅ ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 10 | 4 6 8 9 | syl3anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( Fil ‘ 𝑋 ) ) |
| 11 | elflim | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) | |
| 12 | 10 11 | syldan | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 fLim ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 13 | 3 12 | mpbird | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ( 𝐽 fLim ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |