This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function's value is always in the trace of its filter limit. (Contributed by Thierry Arnoux, 30-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flfcntr.c | |- C = U. J |
|
| flfcntr.b | |- B = U. K |
||
| flfcntr.j | |- ( ph -> J e. Top ) |
||
| flfcntr.a | |- ( ph -> A C_ C ) |
||
| flfcntr.1 | |- ( ph -> F e. ( ( J |`t A ) Cn K ) ) |
||
| flfcntr.y | |- ( ph -> X e. A ) |
||
| Assertion | flfcntr | |- ( ph -> ( F ` X ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flfcntr.c | |- C = U. J |
|
| 2 | flfcntr.b | |- B = U. K |
|
| 3 | flfcntr.j | |- ( ph -> J e. Top ) |
|
| 4 | flfcntr.a | |- ( ph -> A C_ C ) |
|
| 5 | flfcntr.1 | |- ( ph -> F e. ( ( J |`t A ) Cn K ) ) |
|
| 6 | flfcntr.y | |- ( ph -> X e. A ) |
|
| 7 | fveq2 | |- ( x = X -> ( F ` x ) = ( F ` X ) ) |
|
| 8 | 7 | eleq1d | |- ( x = X -> ( ( F ` x ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) <-> ( F ` X ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) |
| 9 | oveq2 | |- ( a = ( ( ( nei ` J ) ` { X } ) |`t A ) -> ( ( J |`t A ) fLim a ) = ( ( J |`t A ) fLim ( ( ( nei ` J ) ` { X } ) |`t A ) ) ) |
|
| 10 | oveq2 | |- ( a = ( ( ( nei ` J ) ` { X } ) |`t A ) -> ( K fLimf a ) = ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ) |
|
| 11 | 10 | fveq1d | |- ( a = ( ( ( nei ` J ) ` { X } ) |`t A ) -> ( ( K fLimf a ) ` F ) = ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| 12 | 11 | eleq2d | |- ( a = ( ( ( nei ` J ) ` { X } ) |`t A ) -> ( ( F ` x ) e. ( ( K fLimf a ) ` F ) <-> ( F ` x ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) |
| 13 | 9 12 | raleqbidv | |- ( a = ( ( ( nei ` J ) ` { X } ) |`t A ) -> ( A. x e. ( ( J |`t A ) fLim a ) ( F ` x ) e. ( ( K fLimf a ) ` F ) <-> A. x e. ( ( J |`t A ) fLim ( ( ( nei ` J ) ` { X } ) |`t A ) ) ( F ` x ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) |
| 14 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` C ) ) |
| 15 | 3 14 | sylib | |- ( ph -> J e. ( TopOn ` C ) ) |
| 16 | resttopon | |- ( ( J e. ( TopOn ` C ) /\ A C_ C ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
|
| 17 | 15 4 16 | syl2anc | |- ( ph -> ( J |`t A ) e. ( TopOn ` A ) ) |
| 18 | cntop2 | |- ( F e. ( ( J |`t A ) Cn K ) -> K e. Top ) |
|
| 19 | 5 18 | syl | |- ( ph -> K e. Top ) |
| 20 | 2 | toptopon | |- ( K e. Top <-> K e. ( TopOn ` B ) ) |
| 21 | 19 20 | sylib | |- ( ph -> K e. ( TopOn ` B ) ) |
| 22 | cnflf | |- ( ( ( J |`t A ) e. ( TopOn ` A ) /\ K e. ( TopOn ` B ) ) -> ( F e. ( ( J |`t A ) Cn K ) <-> ( F : A --> B /\ A. a e. ( Fil ` A ) A. x e. ( ( J |`t A ) fLim a ) ( F ` x ) e. ( ( K fLimf a ) ` F ) ) ) ) |
|
| 23 | 17 21 22 | syl2anc | |- ( ph -> ( F e. ( ( J |`t A ) Cn K ) <-> ( F : A --> B /\ A. a e. ( Fil ` A ) A. x e. ( ( J |`t A ) fLim a ) ( F ` x ) e. ( ( K fLimf a ) ` F ) ) ) ) |
| 24 | 5 23 | mpbid | |- ( ph -> ( F : A --> B /\ A. a e. ( Fil ` A ) A. x e. ( ( J |`t A ) fLim a ) ( F ` x ) e. ( ( K fLimf a ) ` F ) ) ) |
| 25 | 24 | simprd | |- ( ph -> A. a e. ( Fil ` A ) A. x e. ( ( J |`t A ) fLim a ) ( F ` x ) e. ( ( K fLimf a ) ` F ) ) |
| 26 | 1 | sscls | |- ( ( J e. Top /\ A C_ C ) -> A C_ ( ( cls ` J ) ` A ) ) |
| 27 | 3 4 26 | syl2anc | |- ( ph -> A C_ ( ( cls ` J ) ` A ) ) |
| 28 | 27 6 | sseldd | |- ( ph -> X e. ( ( cls ` J ) ` A ) ) |
| 29 | 4 6 | sseldd | |- ( ph -> X e. C ) |
| 30 | trnei | |- ( ( J e. ( TopOn ` C ) /\ A C_ C /\ X e. C ) -> ( X e. ( ( cls ` J ) ` A ) <-> ( ( ( nei ` J ) ` { X } ) |`t A ) e. ( Fil ` A ) ) ) |
|
| 31 | 15 4 29 30 | syl3anc | |- ( ph -> ( X e. ( ( cls ` J ) ` A ) <-> ( ( ( nei ` J ) ` { X } ) |`t A ) e. ( Fil ` A ) ) ) |
| 32 | 28 31 | mpbid | |- ( ph -> ( ( ( nei ` J ) ` { X } ) |`t A ) e. ( Fil ` A ) ) |
| 33 | 13 25 32 | rspcdva | |- ( ph -> A. x e. ( ( J |`t A ) fLim ( ( ( nei ` J ) ` { X } ) |`t A ) ) ( F ` x ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| 34 | neiflim | |- ( ( ( J |`t A ) e. ( TopOn ` A ) /\ X e. A ) -> X e. ( ( J |`t A ) fLim ( ( nei ` ( J |`t A ) ) ` { X } ) ) ) |
|
| 35 | 17 6 34 | syl2anc | |- ( ph -> X e. ( ( J |`t A ) fLim ( ( nei ` ( J |`t A ) ) ` { X } ) ) ) |
| 36 | 6 | snssd | |- ( ph -> { X } C_ A ) |
| 37 | 1 | neitr | |- ( ( J e. Top /\ A C_ C /\ { X } C_ A ) -> ( ( nei ` ( J |`t A ) ) ` { X } ) = ( ( ( nei ` J ) ` { X } ) |`t A ) ) |
| 38 | 3 4 36 37 | syl3anc | |- ( ph -> ( ( nei ` ( J |`t A ) ) ` { X } ) = ( ( ( nei ` J ) ` { X } ) |`t A ) ) |
| 39 | 38 | oveq2d | |- ( ph -> ( ( J |`t A ) fLim ( ( nei ` ( J |`t A ) ) ` { X } ) ) = ( ( J |`t A ) fLim ( ( ( nei ` J ) ` { X } ) |`t A ) ) ) |
| 40 | 35 39 | eleqtrd | |- ( ph -> X e. ( ( J |`t A ) fLim ( ( ( nei ` J ) ` { X } ) |`t A ) ) ) |
| 41 | 8 33 40 | rspcdva | |- ( ph -> ( F ` X ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |