This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is continuous iff it respects filter limits. (Contributed by Jeff Hankins, 6-Sep-2009) (Revised by Stefan O'Rear, 7-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnflf | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncnp | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ) ) | |
| 2 | simplr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 3 | cnpflf | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) ) | |
| 4 | 3 | ad4ant124 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) ) |
| 5 | 2 4 | mpbirand | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |
| 6 | 5 | ralbidva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |
| 7 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 8 | 7 | flimelbas | ⊢ ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → 𝑥 ∈ ∪ 𝐽 ) |
| 9 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝑋 = ∪ 𝐽 ) |
| 11 | 10 | eleq2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝐽 ) ) |
| 12 | 8 11 | imbitrrid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → 𝑥 ∈ 𝑋 ) ) |
| 13 | 12 | pm4.71rd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) |
| 14 | 13 | imbi1d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |
| 15 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ↔ ( 𝑥 ∈ 𝑋 → ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) | |
| 16 | 14 15 | bitrdi | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ↔ ( 𝑥 ∈ 𝑋 → ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) ) |
| 17 | 16 | ralbidv2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |
| 18 | 17 | ralbidv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ↔ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ 𝑋 ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |
| 19 | ralcom | ⊢ ( ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ 𝑋 ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) | |
| 20 | 18 19 | bitrdi | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |
| 21 | 6 20 | bitr4d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) |
| 22 | 21 | pm5.32da | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |
| 23 | 1 22 | bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |