This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divfl0 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 < 𝐵 ↔ ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0nndivcl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
| 3 | addlid | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℂ → ( 0 + ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) ) | |
| 4 | 3 | eqcomd | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℂ → ( 𝐴 / 𝐵 ) = ( 0 + ( 𝐴 / 𝐵 ) ) ) |
| 5 | 2 4 | syl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) = ( 0 + ( 𝐴 / 𝐵 ) ) ) |
| 6 | 5 | fveqeq2d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = 0 ↔ ( ⌊ ‘ ( 0 + ( 𝐴 / 𝐵 ) ) ) = 0 ) ) |
| 7 | 0z | ⊢ 0 ∈ ℤ | |
| 8 | flbi2 | ⊢ ( ( 0 ∈ ℤ ∧ ( 𝐴 / 𝐵 ) ∈ ℝ ) → ( ( ⌊ ‘ ( 0 + ( 𝐴 / 𝐵 ) ) ) = 0 ↔ ( 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) < 1 ) ) ) | |
| 9 | 7 1 8 | sylancr | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( ⌊ ‘ ( 0 + ( 𝐴 / 𝐵 ) ) ) = 0 ↔ ( 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) < 1 ) ) ) |
| 10 | nn0ge0div | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 0 ≤ ( 𝐴 / 𝐵 ) ) | |
| 11 | 10 | biantrurd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) < 1 ↔ ( 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) < 1 ) ) ) |
| 12 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 13 | nnrp | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ+ ) | |
| 14 | divlt1lt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) < 1 ↔ 𝐴 < 𝐵 ) ) | |
| 15 | 12 13 14 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) < 1 ↔ 𝐴 < 𝐵 ) ) |
| 16 | 11 15 | bitr3d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) < 1 ) ↔ 𝐴 < 𝐵 ) ) |
| 17 | 6 9 16 | 3bitrrd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 < 𝐵 ↔ ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = 0 ) ) |