This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021) (Proof shortened by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fldiv4lem1div2uz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℤ ) | |
| 2 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 3 | id | ⊢ ( 𝑁 ∈ ℝ → 𝑁 ∈ ℝ ) | |
| 4 | 4re | ⊢ 4 ∈ ℝ | |
| 5 | 4 | a1i | ⊢ ( 𝑁 ∈ ℝ → 4 ∈ ℝ ) |
| 6 | 4ne0 | ⊢ 4 ≠ 0 | |
| 7 | 6 | a1i | ⊢ ( 𝑁 ∈ ℝ → 4 ≠ 0 ) |
| 8 | 3 5 7 | redivcld | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 / 4 ) ∈ ℝ ) |
| 9 | flle | ⊢ ( ( 𝑁 / 4 ) ∈ ℝ → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( 𝑁 / 4 ) ) | |
| 10 | 1 2 8 9 | 4syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( 𝑁 / 4 ) ) |
| 11 | 1red | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℝ ) | |
| 12 | eluzelre | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℝ ) | |
| 13 | rehalfcl | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 / 2 ) ∈ ℝ ) | |
| 14 | 1 2 13 | 3syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 / 2 ) ∈ ℝ ) |
| 15 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 16 | 15 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℝ+ ) |
| 17 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑁 ) | |
| 18 | divge1 | ⊢ ( ( 2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ ∧ 2 ≤ 𝑁 ) → 1 ≤ ( 𝑁 / 2 ) ) | |
| 19 | 16 12 17 18 | syl3anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 ≤ ( 𝑁 / 2 ) ) |
| 20 | eluzelcn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℂ ) | |
| 21 | subhalfhalf | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 − ( 𝑁 / 2 ) ) = ( 𝑁 / 2 ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − ( 𝑁 / 2 ) ) = ( 𝑁 / 2 ) ) |
| 23 | 19 22 | breqtrrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 ≤ ( 𝑁 − ( 𝑁 / 2 ) ) ) |
| 24 | 11 12 14 23 | lesubd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 / 2 ) ≤ ( 𝑁 − 1 ) ) |
| 25 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 26 | 25 | eqcomi | ⊢ 4 = ( 2 · 2 ) |
| 27 | 26 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 4 = ( 2 · 2 ) ) |
| 28 | 27 | oveq2d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 / 4 ) = ( 𝑁 / ( 2 · 2 ) ) ) |
| 29 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 30 | 29 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 31 | divdiv1 | ⊢ ( ( 𝑁 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 𝑁 / 2 ) / 2 ) = ( 𝑁 / ( 2 · 2 ) ) ) | |
| 32 | 20 30 30 31 | syl3anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑁 / 2 ) / 2 ) = ( 𝑁 / ( 2 · 2 ) ) ) |
| 33 | 28 32 | eqtr4d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 / 4 ) = ( ( 𝑁 / 2 ) / 2 ) ) |
| 34 | 33 | breq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑁 / 4 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ↔ ( ( 𝑁 / 2 ) / 2 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) |
| 35 | peano2rem | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 − 1 ) ∈ ℝ ) | |
| 36 | 12 35 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ℝ ) |
| 37 | 14 36 16 | lediv1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑁 / 2 ) ≤ ( 𝑁 − 1 ) ↔ ( ( 𝑁 / 2 ) / 2 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) |
| 38 | 34 37 | bitr4d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑁 / 4 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ↔ ( 𝑁 / 2 ) ≤ ( 𝑁 − 1 ) ) ) |
| 39 | 24 38 | mpbird | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 / 4 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 40 | 8 | flcld | ⊢ ( 𝑁 ∈ ℝ → ( ⌊ ‘ ( 𝑁 / 4 ) ) ∈ ℤ ) |
| 41 | 40 | zred | ⊢ ( 𝑁 ∈ ℝ → ( ⌊ ‘ ( 𝑁 / 4 ) ) ∈ ℝ ) |
| 42 | 35 | rehalfcld | ⊢ ( 𝑁 ∈ ℝ → ( ( 𝑁 − 1 ) / 2 ) ∈ ℝ ) |
| 43 | 41 8 42 | 3jca | ⊢ ( 𝑁 ∈ ℝ → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) ∈ ℝ ∧ ( 𝑁 / 4 ) ∈ ℝ ∧ ( ( 𝑁 − 1 ) / 2 ) ∈ ℝ ) ) |
| 44 | letr | ⊢ ( ( ( ⌊ ‘ ( 𝑁 / 4 ) ) ∈ ℝ ∧ ( 𝑁 / 4 ) ∈ ℝ ∧ ( ( 𝑁 − 1 ) / 2 ) ∈ ℝ ) → ( ( ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( 𝑁 / 4 ) ∧ ( 𝑁 / 4 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) | |
| 45 | 1 2 43 44 | 4syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( 𝑁 / 4 ) ∧ ( 𝑁 / 4 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) |
| 46 | 10 39 45 | mp2and | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |