This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for finsumvtxdg2sstep . (Contributed by AV, 12-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finsumvtxdg2sstep.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| finsumvtxdg2sstep.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| finsumvtxdg2sstep.k | ⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) | ||
| finsumvtxdg2sstep.i | ⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | ||
| finsumvtxdg2sstep.p | ⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) | ||
| finsumvtxdg2sstep.s | ⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 | ||
| finsumvtxdg2ssteplem.j | ⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } | ||
| Assertion | finsumvtxdg2ssteplem4 | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finsumvtxdg2sstep.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | finsumvtxdg2sstep.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | finsumvtxdg2sstep.k | ⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) | |
| 4 | finsumvtxdg2sstep.i | ⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | |
| 5 | finsumvtxdg2sstep.p | ⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) | |
| 6 | finsumvtxdg2sstep.s | ⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 | |
| 7 | finsumvtxdg2ssteplem.j | ⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } | |
| 8 | 1 2 3 4 5 6 7 | vtxdginducedm1fi | ⊢ ( 𝐸 ∈ Fin → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 9 | 8 | ad2antll | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 10 | 9 | sumeq2d | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 11 | diffi | ⊢ ( 𝑉 ∈ Fin → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
| 14 | 5 | dmeqi | ⊢ dom 𝑃 = dom ( 𝐸 ↾ 𝐼 ) |
| 15 | finresfin | ⊢ ( 𝐸 ∈ Fin → ( 𝐸 ↾ 𝐼 ) ∈ Fin ) | |
| 16 | dmfi | ⊢ ( ( 𝐸 ↾ 𝐼 ) ∈ Fin → dom ( 𝐸 ↾ 𝐼 ) ∈ Fin ) | |
| 17 | 15 16 | syl | ⊢ ( 𝐸 ∈ Fin → dom ( 𝐸 ↾ 𝐼 ) ∈ Fin ) |
| 18 | 14 17 | eqeltrid | ⊢ ( 𝐸 ∈ Fin → dom 𝑃 ∈ Fin ) |
| 19 | 18 | ad2antll | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → dom 𝑃 ∈ Fin ) |
| 20 | 3 | eqcomi | ⊢ ( 𝑉 ∖ { 𝑁 } ) = 𝐾 |
| 21 | 20 | eleq2i | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ↔ 𝑣 ∈ 𝐾 ) |
| 22 | 21 | biimpi | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑣 ∈ 𝐾 ) |
| 23 | 6 | fveq2i | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 〈 𝐾 , 𝑃 〉 ) |
| 24 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 25 | 24 | difexi | ⊢ ( 𝑉 ∖ { 𝑁 } ) ∈ V |
| 26 | 3 25 | eqeltri | ⊢ 𝐾 ∈ V |
| 27 | 2 | fvexi | ⊢ 𝐸 ∈ V |
| 28 | 27 | resex | ⊢ ( 𝐸 ↾ 𝐼 ) ∈ V |
| 29 | 5 28 | eqeltri | ⊢ 𝑃 ∈ V |
| 30 | 26 29 | opvtxfvi | ⊢ ( Vtx ‘ 〈 𝐾 , 𝑃 〉 ) = 𝐾 |
| 31 | 23 30 | eqtr2i | ⊢ 𝐾 = ( Vtx ‘ 𝑆 ) |
| 32 | 1 2 3 4 5 6 | vtxdginducedm1lem1 | ⊢ ( iEdg ‘ 𝑆 ) = 𝑃 |
| 33 | 32 | eqcomi | ⊢ 𝑃 = ( iEdg ‘ 𝑆 ) |
| 34 | eqid | ⊢ dom 𝑃 = dom 𝑃 | |
| 35 | 31 33 34 | vtxdgfisnn0 | ⊢ ( ( dom 𝑃 ∈ Fin ∧ 𝑣 ∈ 𝐾 ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) ∈ ℕ0 ) |
| 36 | 35 | nn0cnd | ⊢ ( ( dom 𝑃 ∈ Fin ∧ 𝑣 ∈ 𝐾 ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) ∈ ℂ ) |
| 37 | 19 22 36 | syl2an | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) ∈ ℂ ) |
| 38 | dmfi | ⊢ ( 𝐸 ∈ Fin → dom 𝐸 ∈ Fin ) | |
| 39 | rabfi | ⊢ ( dom 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ∈ Fin ) | |
| 40 | 38 39 | syl | ⊢ ( 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ∈ Fin ) |
| 41 | 7 40 | eqeltrid | ⊢ ( 𝐸 ∈ Fin → 𝐽 ∈ Fin ) |
| 42 | rabfi | ⊢ ( 𝐽 ∈ Fin → { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ∈ Fin ) | |
| 43 | hashcl | ⊢ ( { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ∈ Fin → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℕ0 ) | |
| 44 | 41 42 43 | 3syl | ⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℕ0 ) |
| 45 | 44 | nn0cnd | ⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
| 46 | 45 | ad2antll | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
| 47 | 46 | adantr | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
| 48 | 13 37 47 | fsumadd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) = ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 49 | 10 48 | eqtrd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 50 | 3 | sumeq1i | ⊢ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) |
| 51 | 50 | eqeq1i | ⊢ ( Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ↔ Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) |
| 52 | oveq1 | ⊢ ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) | |
| 53 | 51 52 | sylbi | ⊢ ( Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 54 | 49 53 | sylan9eq | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 55 | 54 | oveq1d | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) |
| 56 | 45 | adantl | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
| 57 | 56 | adantr | ⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
| 58 | 12 57 | fsumcl | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
| 59 | hashcl | ⊢ ( 𝐽 ∈ Fin → ( ♯ ‘ 𝐽 ) ∈ ℕ0 ) | |
| 60 | 41 59 | syl | ⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝐽 ) ∈ ℕ0 ) |
| 61 | 60 | nn0cnd | ⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝐽 ) ∈ ℂ ) |
| 62 | 61 | adantl | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( ♯ ‘ 𝐽 ) ∈ ℂ ) |
| 63 | rabfi | ⊢ ( dom 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin ) | |
| 64 | hashcl | ⊢ ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin → ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ∈ ℕ0 ) | |
| 65 | 38 63 64 | 3syl | ⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ∈ ℕ0 ) |
| 66 | 65 | nn0cnd | ⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ∈ ℂ ) |
| 67 | 66 | adantl | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ∈ ℂ ) |
| 68 | 58 62 67 | add12d | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( ♯ ‘ 𝐽 ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) |
| 69 | 68 | adantl | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( ♯ ‘ 𝐽 ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) |
| 70 | 1 2 3 4 5 6 7 | finsumvtxdg2ssteplem3 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ♯ ‘ 𝐽 ) ) |
| 71 | 70 | oveq2d | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ♯ ‘ 𝐽 ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ 𝐽 ) ) ) |
| 72 | 61 | 2timesd | ⊢ ( 𝐸 ∈ Fin → ( 2 · ( ♯ ‘ 𝐽 ) ) = ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ 𝐽 ) ) ) |
| 73 | 72 | eqcomd | ⊢ ( 𝐸 ∈ Fin → ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ 𝐽 ) ) = ( 2 · ( ♯ ‘ 𝐽 ) ) ) |
| 74 | 73 | ad2antll | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ 𝐽 ) ) = ( 2 · ( ♯ ‘ 𝐽 ) ) ) |
| 75 | 69 71 74 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( 2 · ( ♯ ‘ 𝐽 ) ) ) |
| 76 | 75 | oveq2d | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( 2 · ( ♯ ‘ 𝑃 ) ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + ( 2 · ( ♯ ‘ 𝐽 ) ) ) ) |
| 77 | 2cnd | ⊢ ( 𝐸 ∈ Fin → 2 ∈ ℂ ) | |
| 78 | 5 15 | eqeltrid | ⊢ ( 𝐸 ∈ Fin → 𝑃 ∈ Fin ) |
| 79 | hashcl | ⊢ ( 𝑃 ∈ Fin → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) | |
| 80 | 78 79 | syl | ⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
| 81 | 80 | nn0cnd | ⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
| 82 | 77 81 | mulcld | ⊢ ( 𝐸 ∈ Fin → ( 2 · ( ♯ ‘ 𝑃 ) ) ∈ ℂ ) |
| 83 | 82 | ad2antll | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 2 · ( ♯ ‘ 𝑃 ) ) ∈ ℂ ) |
| 84 | 58 | adantl | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
| 85 | 61 66 | addcld | ⊢ ( 𝐸 ∈ Fin → ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ∈ ℂ ) |
| 86 | 85 | ad2antll | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ∈ ℂ ) |
| 87 | 83 84 86 | addassd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) ) |
| 88 | 2cnd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → 2 ∈ ℂ ) | |
| 89 | 81 | ad2antll | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
| 90 | 61 | ad2antll | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ 𝐽 ) ∈ ℂ ) |
| 91 | 88 89 90 | adddid | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + ( 2 · ( ♯ ‘ 𝐽 ) ) ) ) |
| 92 | 76 87 91 | 3eqtr4d | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) ) |
| 93 | 92 | adantr | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) ) |
| 94 | 55 93 | eqtrd | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) ) |