This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for finsumvtxdg2sstep . (Contributed by AV, 19-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finsumvtxdg2sstep.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| finsumvtxdg2sstep.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| finsumvtxdg2sstep.k | ⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) | ||
| finsumvtxdg2sstep.i | ⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | ||
| finsumvtxdg2sstep.p | ⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) | ||
| finsumvtxdg2sstep.s | ⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 | ||
| finsumvtxdg2ssteplem.j | ⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } | ||
| Assertion | finsumvtxdg2ssteplem3 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ♯ ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finsumvtxdg2sstep.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | finsumvtxdg2sstep.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | finsumvtxdg2sstep.k | ⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) | |
| 4 | finsumvtxdg2sstep.i | ⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | |
| 5 | finsumvtxdg2sstep.p | ⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) | |
| 6 | finsumvtxdg2sstep.s | ⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 | |
| 7 | finsumvtxdg2ssteplem.j | ⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } | |
| 8 | 7 | reqabi | ⊢ ( 𝑖 ∈ 𝐽 ↔ ( 𝑖 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
| 9 | 8 | anbi1i | ⊢ ( ( 𝑖 ∈ 𝐽 ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ↔ ( ( 𝑖 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
| 10 | anass | ⊢ ( ( ( 𝑖 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ↔ ( 𝑖 ∈ dom 𝐸 ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) | |
| 11 | 9 10 | bitri | ⊢ ( ( 𝑖 ∈ 𝐽 ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ↔ ( 𝑖 ∈ dom 𝐸 ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 12 | 11 | rabbia2 | ⊢ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } = { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } |
| 13 | 12 | fveq2i | ⊢ ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) = ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
| 14 | 13 | a1i | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) = ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) ) |
| 15 | 14 | sumeq2dv | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) = Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) ) |
| 16 | 15 | oveq1d | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) |
| 17 | simpll | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → 𝐺 ∈ UPGraph ) | |
| 18 | simpr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) | |
| 19 | simplr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → 𝑁 ∈ 𝑉 ) | |
| 20 | 1 2 | numedglnl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) |
| 21 | 17 18 19 20 | syl3anc | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) |
| 22 | 16 21 | eqtrd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) |
| 23 | 7 | fveq2i | ⊢ ( ♯ ‘ 𝐽 ) = ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) |
| 24 | 22 23 | eqtr4di | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ♯ ‘ 𝐽 ) ) |