This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for vtxdginducedm1 : the edge function in the induced subgraph S of a pseudograph G obtained by removing one vertex N . (Contributed by AV, 16-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdginducedm1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdginducedm1.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| vtxdginducedm1.k | ⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) | ||
| vtxdginducedm1.i | ⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | ||
| vtxdginducedm1.p | ⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) | ||
| vtxdginducedm1.s | ⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 | ||
| Assertion | vtxdginducedm1lem1 | ⊢ ( iEdg ‘ 𝑆 ) = 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdginducedm1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdginducedm1.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | vtxdginducedm1.k | ⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) | |
| 4 | vtxdginducedm1.i | ⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | |
| 5 | vtxdginducedm1.p | ⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) | |
| 6 | vtxdginducedm1.s | ⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 | |
| 7 | 6 | fveq2i | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 〈 𝐾 , 𝑃 〉 ) |
| 8 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 9 | 8 | difexi | ⊢ ( 𝑉 ∖ { 𝑁 } ) ∈ V |
| 10 | 3 9 | eqeltri | ⊢ 𝐾 ∈ V |
| 11 | 2 | fvexi | ⊢ 𝐸 ∈ V |
| 12 | 11 | resex | ⊢ ( 𝐸 ↾ 𝐼 ) ∈ V |
| 13 | 5 12 | eqeltri | ⊢ 𝑃 ∈ V |
| 14 | 10 13 | opiedgfvi | ⊢ ( iEdg ‘ 〈 𝐾 , 𝑃 〉 ) = 𝑃 |
| 15 | 7 14 | eqtri | ⊢ ( iEdg ‘ 𝑆 ) = 𝑃 |