This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid whose elements have finite order is a subgroup. (Contributed by SN, 31-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finodsubmsubg.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| finodsubmsubg.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| finodsubmsubg.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | ||
| finodsubmsubg.1 | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 ( 𝑂 ‘ 𝑎 ) ∈ ℕ ) | ||
| Assertion | finodsubmsubg | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finodsubmsubg.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 2 | finodsubmsubg.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 3 | finodsubmsubg.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 4 | finodsubmsubg.1 | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 ( 𝑂 ‘ 𝑎 ) ∈ ℕ ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 8 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 9 | 5 | submss | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 11 | 10 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ( Base ‘ 𝐺 ) ) |
| 12 | 5 1 6 7 8 11 | odm1inv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( 𝑂 ‘ 𝑎 ) − 1 ) ( .g ‘ 𝐺 ) 𝑎 ) = ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝑎 ) − 1 ) ( .g ‘ 𝐺 ) 𝑎 ) = ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ) |
| 14 | eqid | ⊢ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 15 | eqid | ⊢ ( .g ‘ ( 𝐺 ↾s 𝑆 ) ) = ( .g ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 16 | eqid | ⊢ ( 𝐺 ↾s 𝑆 ) = ( 𝐺 ↾s 𝑆 ) | |
| 17 | 16 | submmnd | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐺 ↾s 𝑆 ) ∈ Mnd ) |
| 18 | 3 17 | syl | ⊢ ( 𝜑 → ( 𝐺 ↾s 𝑆 ) ∈ Mnd ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℕ ) → ( 𝐺 ↾s 𝑆 ) ∈ Mnd ) |
| 20 | nnm1nn0 | ⊢ ( ( 𝑂 ‘ 𝑎 ) ∈ ℕ → ( ( 𝑂 ‘ 𝑎 ) − 1 ) ∈ ℕ0 ) | |
| 21 | 20 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝑎 ) − 1 ) ∈ ℕ0 ) |
| 22 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℕ ) → 𝑎 ∈ 𝑆 ) | |
| 23 | 16 5 | ressbas2 | ⊢ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 24 | 10 23 | syl | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℕ ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 26 | 22 25 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℕ ) → 𝑎 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 27 | 14 15 19 21 26 | mulgnn0cld | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝑎 ) − 1 ) ( .g ‘ ( 𝐺 ↾s 𝑆 ) ) 𝑎 ) ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 28 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℕ ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 29 | 6 16 15 | submmulg | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( ( 𝑂 ‘ 𝑎 ) − 1 ) ∈ ℕ0 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( 𝑂 ‘ 𝑎 ) − 1 ) ( .g ‘ 𝐺 ) 𝑎 ) = ( ( ( 𝑂 ‘ 𝑎 ) − 1 ) ( .g ‘ ( 𝐺 ↾s 𝑆 ) ) 𝑎 ) ) |
| 30 | 28 21 22 29 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝑎 ) − 1 ) ( .g ‘ 𝐺 ) 𝑎 ) = ( ( ( 𝑂 ‘ 𝑎 ) − 1 ) ( .g ‘ ( 𝐺 ↾s 𝑆 ) ) 𝑎 ) ) |
| 31 | 27 30 25 | 3eltr4d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝑎 ) − 1 ) ( .g ‘ 𝐺 ) 𝑎 ) ∈ 𝑆 ) |
| 32 | 13 31 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℕ ) → ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) |
| 33 | 32 | ex | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑂 ‘ 𝑎 ) ∈ ℕ → ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) ) |
| 34 | 33 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝑆 ( 𝑂 ‘ 𝑎 ) ∈ ℕ → ∀ 𝑎 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) ) |
| 35 | 4 34 | mpd | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) |
| 36 | 7 | issubg3 | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑎 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) ) ) |
| 37 | 2 36 | syl | ⊢ ( 𝜑 → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑎 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑆 ) ) ) |
| 38 | 3 35 37 | mpbir2and | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |