This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | submmulgcl.t | ⊢ ∙ = ( .g ‘ 𝐺 ) | |
| submmulg.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | ||
| submmulg.t | ⊢ · = ( .g ‘ 𝐻 ) | ||
| Assertion | submmulg | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 ∙ 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submmulgcl.t | ⊢ ∙ = ( .g ‘ 𝐺 ) | |
| 2 | submmulg.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 3 | submmulg.t | ⊢ · = ( .g ‘ 𝐻 ) | |
| 4 | simpl1 | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | 2 5 | ressplusg | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 7 | 4 6 | syl | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 8 | 7 | seqeq2d | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ) |
| 9 | 8 | fveq1d | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 10 | simpr | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 12 | 11 | submss | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 14 | simp3 | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) | |
| 15 | 13 14 | sseldd | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 17 | eqid | ⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) | |
| 18 | 11 5 1 17 | mulgnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑁 ∙ 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 19 | 10 16 18 | syl2anc | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∙ 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 20 | 2 | submbas | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 22 | 14 21 | eleqtrd | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
| 24 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 25 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 26 | eqid | ⊢ seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) | |
| 27 | 24 25 3 26 | mulgnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 28 | 10 23 27 | syl2anc | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 29 | 9 19 28 | 3eqtr4d | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∙ 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
| 30 | simpl1 | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 31 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 32 | 2 31 | subm0 | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 33 | 30 32 | syl | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 34 | 15 | adantr | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 35 | 11 31 1 | mulg0 | ⊢ ( 𝑋 ∈ ( Base ‘ 𝐺 ) → ( 0 ∙ 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 36 | 34 35 | syl | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 0 ∙ 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 37 | 22 | adantr | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
| 38 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 39 | 24 38 3 | mulg0 | ⊢ ( 𝑋 ∈ ( Base ‘ 𝐻 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐻 ) ) |
| 40 | 37 39 | syl | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐻 ) ) |
| 41 | 33 36 40 | 3eqtr4d | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 0 ∙ 𝑋 ) = ( 0 · 𝑋 ) ) |
| 42 | simpr | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → 𝑁 = 0 ) | |
| 43 | 42 | oveq1d | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 𝑁 ∙ 𝑋 ) = ( 0 ∙ 𝑋 ) ) |
| 44 | 42 | oveq1d | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 45 | 41 43 44 | 3eqtr4d | ⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 𝑁 ∙ 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
| 46 | simp2 | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑁 ∈ ℕ0 ) | |
| 47 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 48 | 46 47 | sylib | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 49 | 29 45 48 | mpjaodan | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 ∙ 𝑋 ) = ( 𝑁 · 𝑋 ) ) |