This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A shorter proof of 0subg using df-od . (Contributed by SN, 31-Jan-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0subgALT.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| Assertion | 0subgALT | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0subgALT.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) | |
| 3 | id | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) | |
| 4 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 5 | 1 | 0subm | ⊢ ( 𝐺 ∈ Mnd → { 0 } ∈ ( SubMnd ‘ 𝐺 ) ) |
| 6 | 4 5 | syl | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubMnd ‘ 𝐺 ) ) |
| 7 | 2 1 | od1 | ⊢ ( 𝐺 ∈ Grp → ( ( od ‘ 𝐺 ) ‘ 0 ) = 1 ) |
| 8 | 1nn | ⊢ 1 ∈ ℕ | |
| 9 | 7 8 | eqeltrdi | ⊢ ( 𝐺 ∈ Grp → ( ( od ‘ 𝐺 ) ‘ 0 ) ∈ ℕ ) |
| 10 | 1 | fvexi | ⊢ 0 ∈ V |
| 11 | fveq2 | ⊢ ( 𝑎 = 0 → ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = ( ( od ‘ 𝐺 ) ‘ 0 ) ) | |
| 12 | 11 | eleq1d | ⊢ ( 𝑎 = 0 → ( ( ( od ‘ 𝐺 ) ‘ 𝑎 ) ∈ ℕ ↔ ( ( od ‘ 𝐺 ) ‘ 0 ) ∈ ℕ ) ) |
| 13 | 10 12 | ralsn | ⊢ ( ∀ 𝑎 ∈ { 0 } ( ( od ‘ 𝐺 ) ‘ 𝑎 ) ∈ ℕ ↔ ( ( od ‘ 𝐺 ) ‘ 0 ) ∈ ℕ ) |
| 14 | 9 13 | sylibr | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑎 ∈ { 0 } ( ( od ‘ 𝐺 ) ‘ 𝑎 ) ∈ ℕ ) |
| 15 | 2 3 6 14 | finodsubmsubg | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |