This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid whose elements have finite order is a subgroup. (Contributed by SN, 31-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finodsubmsubg.o | |- O = ( od ` G ) |
|
| finodsubmsubg.g | |- ( ph -> G e. Grp ) |
||
| finodsubmsubg.s | |- ( ph -> S e. ( SubMnd ` G ) ) |
||
| finodsubmsubg.1 | |- ( ph -> A. a e. S ( O ` a ) e. NN ) |
||
| Assertion | finodsubmsubg | |- ( ph -> S e. ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finodsubmsubg.o | |- O = ( od ` G ) |
|
| 2 | finodsubmsubg.g | |- ( ph -> G e. Grp ) |
|
| 3 | finodsubmsubg.s | |- ( ph -> S e. ( SubMnd ` G ) ) |
|
| 4 | finodsubmsubg.1 | |- ( ph -> A. a e. S ( O ` a ) e. NN ) |
|
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 6 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 7 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 8 | 2 | adantr | |- ( ( ph /\ a e. S ) -> G e. Grp ) |
| 9 | 5 | submss | |- ( S e. ( SubMnd ` G ) -> S C_ ( Base ` G ) ) |
| 10 | 3 9 | syl | |- ( ph -> S C_ ( Base ` G ) ) |
| 11 | 10 | sselda | |- ( ( ph /\ a e. S ) -> a e. ( Base ` G ) ) |
| 12 | 5 1 6 7 8 11 | odm1inv | |- ( ( ph /\ a e. S ) -> ( ( ( O ` a ) - 1 ) ( .g ` G ) a ) = ( ( invg ` G ) ` a ) ) |
| 13 | 12 | adantr | |- ( ( ( ph /\ a e. S ) /\ ( O ` a ) e. NN ) -> ( ( ( O ` a ) - 1 ) ( .g ` G ) a ) = ( ( invg ` G ) ` a ) ) |
| 14 | eqid | |- ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) ) |
|
| 15 | eqid | |- ( .g ` ( G |`s S ) ) = ( .g ` ( G |`s S ) ) |
|
| 16 | eqid | |- ( G |`s S ) = ( G |`s S ) |
|
| 17 | 16 | submmnd | |- ( S e. ( SubMnd ` G ) -> ( G |`s S ) e. Mnd ) |
| 18 | 3 17 | syl | |- ( ph -> ( G |`s S ) e. Mnd ) |
| 19 | 18 | ad2antrr | |- ( ( ( ph /\ a e. S ) /\ ( O ` a ) e. NN ) -> ( G |`s S ) e. Mnd ) |
| 20 | nnm1nn0 | |- ( ( O ` a ) e. NN -> ( ( O ` a ) - 1 ) e. NN0 ) |
|
| 21 | 20 | adantl | |- ( ( ( ph /\ a e. S ) /\ ( O ` a ) e. NN ) -> ( ( O ` a ) - 1 ) e. NN0 ) |
| 22 | simplr | |- ( ( ( ph /\ a e. S ) /\ ( O ` a ) e. NN ) -> a e. S ) |
|
| 23 | 16 5 | ressbas2 | |- ( S C_ ( Base ` G ) -> S = ( Base ` ( G |`s S ) ) ) |
| 24 | 10 23 | syl | |- ( ph -> S = ( Base ` ( G |`s S ) ) ) |
| 25 | 24 | ad2antrr | |- ( ( ( ph /\ a e. S ) /\ ( O ` a ) e. NN ) -> S = ( Base ` ( G |`s S ) ) ) |
| 26 | 22 25 | eleqtrd | |- ( ( ( ph /\ a e. S ) /\ ( O ` a ) e. NN ) -> a e. ( Base ` ( G |`s S ) ) ) |
| 27 | 14 15 19 21 26 | mulgnn0cld | |- ( ( ( ph /\ a e. S ) /\ ( O ` a ) e. NN ) -> ( ( ( O ` a ) - 1 ) ( .g ` ( G |`s S ) ) a ) e. ( Base ` ( G |`s S ) ) ) |
| 28 | 3 | ad2antrr | |- ( ( ( ph /\ a e. S ) /\ ( O ` a ) e. NN ) -> S e. ( SubMnd ` G ) ) |
| 29 | 6 16 15 | submmulg | |- ( ( S e. ( SubMnd ` G ) /\ ( ( O ` a ) - 1 ) e. NN0 /\ a e. S ) -> ( ( ( O ` a ) - 1 ) ( .g ` G ) a ) = ( ( ( O ` a ) - 1 ) ( .g ` ( G |`s S ) ) a ) ) |
| 30 | 28 21 22 29 | syl3anc | |- ( ( ( ph /\ a e. S ) /\ ( O ` a ) e. NN ) -> ( ( ( O ` a ) - 1 ) ( .g ` G ) a ) = ( ( ( O ` a ) - 1 ) ( .g ` ( G |`s S ) ) a ) ) |
| 31 | 27 30 25 | 3eltr4d | |- ( ( ( ph /\ a e. S ) /\ ( O ` a ) e. NN ) -> ( ( ( O ` a ) - 1 ) ( .g ` G ) a ) e. S ) |
| 32 | 13 31 | eqeltrrd | |- ( ( ( ph /\ a e. S ) /\ ( O ` a ) e. NN ) -> ( ( invg ` G ) ` a ) e. S ) |
| 33 | 32 | ex | |- ( ( ph /\ a e. S ) -> ( ( O ` a ) e. NN -> ( ( invg ` G ) ` a ) e. S ) ) |
| 34 | 33 | ralimdva | |- ( ph -> ( A. a e. S ( O ` a ) e. NN -> A. a e. S ( ( invg ` G ) ` a ) e. S ) ) |
| 35 | 4 34 | mpd | |- ( ph -> A. a e. S ( ( invg ` G ) ` a ) e. S ) |
| 36 | 7 | issubg3 | |- ( G e. Grp -> ( S e. ( SubGrp ` G ) <-> ( S e. ( SubMnd ` G ) /\ A. a e. S ( ( invg ` G ) ` a ) e. S ) ) ) |
| 37 | 2 36 | syl | |- ( ph -> ( S e. ( SubGrp ` G ) <-> ( S e. ( SubMnd ` G ) /\ A. a e. S ( ( invg ` G ) ` a ) e. S ) ) ) |
| 38 | 3 35 37 | mpbir2and | |- ( ph -> S e. ( SubGrp ` G ) ) |