This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . In a chain of finite sets, equinumerosity is equivalent to equality. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin23lem25 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( 𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpss2 | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ) | |
| 2 | php3 | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊊ 𝐵 ) → 𝐴 ≺ 𝐵 ) | |
| 3 | sdomnen | ⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊊ 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) |
| 5 | 4 | ex | ⊢ ( 𝐵 ∈ Fin → ( 𝐴 ⊊ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) |
| 6 | 1 5 | biimtrrid | ⊢ ( 𝐵 ∈ Fin → ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) |
| 8 | 7 | expd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ⊆ 𝐵 → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) ) |
| 9 | dfpss2 | ⊢ ( 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ) | |
| 10 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 11 | 10 | notbii | ⊢ ( ¬ 𝐵 = 𝐴 ↔ ¬ 𝐴 = 𝐵 ) |
| 12 | 11 | anbi2i | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) |
| 13 | 9 12 | bitri | ⊢ ( 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) |
| 14 | php3 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) | |
| 15 | sdomnen | ⊢ ( 𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴 ) | |
| 16 | ensym | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) | |
| 17 | 15 16 | nsyl | ⊢ ( 𝐵 ≺ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) |
| 18 | 14 17 | syl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → ¬ 𝐴 ≈ 𝐵 ) |
| 19 | 18 | ex | ⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) ) |
| 20 | 13 19 | biimtrrid | ⊢ ( 𝐴 ∈ Fin → ( ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) |
| 22 | 21 | expd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐵 ⊆ 𝐴 → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) ) |
| 23 | 8 22 | jaod | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) ) |
| 24 | 23 | 3impia | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) |
| 25 | 24 | con4d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( 𝐴 ≈ 𝐵 → 𝐴 = 𝐵 ) ) |
| 26 | eqeng | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) | |
| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
| 28 | 25 27 | impbid | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( 𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵 ) ) |