This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . In a chain of finite sets, initial segments are finite. (Contributed by Stefan O'Rear, 8-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin1a2lem9 | |- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> { b e. X | b ~<_ A } e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfin2 | |- _om = ( On i^i Fin ) |
|
| 2 | inss2 | |- ( On i^i Fin ) C_ Fin |
|
| 3 | 1 2 | eqsstri | |- _om C_ Fin |
| 4 | peano2 | |- ( A e. _om -> suc A e. _om ) |
|
| 5 | 3 4 | sselid | |- ( A e. _om -> suc A e. Fin ) |
| 6 | 5 | 3ad2ant3 | |- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> suc A e. Fin ) |
| 7 | 4 | 3ad2ant3 | |- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> suc A e. _om ) |
| 8 | breq1 | |- ( b = c -> ( b ~<_ A <-> c ~<_ A ) ) |
|
| 9 | 8 | elrab | |- ( c e. { b e. X | b ~<_ A } <-> ( c e. X /\ c ~<_ A ) ) |
| 10 | simprr | |- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> c ~<_ A ) |
|
| 11 | simpl2 | |- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> X C_ Fin ) |
|
| 12 | simprl | |- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> c e. X ) |
|
| 13 | 11 12 | sseldd | |- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> c e. Fin ) |
| 14 | finnum | |- ( c e. Fin -> c e. dom card ) |
|
| 15 | 13 14 | syl | |- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> c e. dom card ) |
| 16 | simpl3 | |- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> A e. _om ) |
|
| 17 | 3 16 | sselid | |- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> A e. Fin ) |
| 18 | finnum | |- ( A e. Fin -> A e. dom card ) |
|
| 19 | 17 18 | syl | |- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> A e. dom card ) |
| 20 | carddom2 | |- ( ( c e. dom card /\ A e. dom card ) -> ( ( card ` c ) C_ ( card ` A ) <-> c ~<_ A ) ) |
|
| 21 | 15 19 20 | syl2anc | |- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> ( ( card ` c ) C_ ( card ` A ) <-> c ~<_ A ) ) |
| 22 | 10 21 | mpbird | |- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> ( card ` c ) C_ ( card ` A ) ) |
| 23 | 22 | ex | |- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( c e. X /\ c ~<_ A ) -> ( card ` c ) C_ ( card ` A ) ) ) |
| 24 | cardnn | |- ( A e. _om -> ( card ` A ) = A ) |
|
| 25 | 24 | sseq2d | |- ( A e. _om -> ( ( card ` c ) C_ ( card ` A ) <-> ( card ` c ) C_ A ) ) |
| 26 | cardon | |- ( card ` c ) e. On |
|
| 27 | nnon | |- ( A e. _om -> A e. On ) |
|
| 28 | onsssuc | |- ( ( ( card ` c ) e. On /\ A e. On ) -> ( ( card ` c ) C_ A <-> ( card ` c ) e. suc A ) ) |
|
| 29 | 26 27 28 | sylancr | |- ( A e. _om -> ( ( card ` c ) C_ A <-> ( card ` c ) e. suc A ) ) |
| 30 | 25 29 | bitrd | |- ( A e. _om -> ( ( card ` c ) C_ ( card ` A ) <-> ( card ` c ) e. suc A ) ) |
| 31 | 30 | 3ad2ant3 | |- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( card ` c ) C_ ( card ` A ) <-> ( card ` c ) e. suc A ) ) |
| 32 | 23 31 | sylibd | |- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( c e. X /\ c ~<_ A ) -> ( card ` c ) e. suc A ) ) |
| 33 | 9 32 | biimtrid | |- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( c e. { b e. X | b ~<_ A } -> ( card ` c ) e. suc A ) ) |
| 34 | elrabi | |- ( c e. { b e. X | b ~<_ A } -> c e. X ) |
|
| 35 | elrabi | |- ( d e. { b e. X | b ~<_ A } -> d e. X ) |
|
| 36 | ssel | |- ( X C_ Fin -> ( c e. X -> c e. Fin ) ) |
|
| 37 | ssel | |- ( X C_ Fin -> ( d e. X -> d e. Fin ) ) |
|
| 38 | 36 37 | anim12d | |- ( X C_ Fin -> ( ( c e. X /\ d e. X ) -> ( c e. Fin /\ d e. Fin ) ) ) |
| 39 | 38 | imp | |- ( ( X C_ Fin /\ ( c e. X /\ d e. X ) ) -> ( c e. Fin /\ d e. Fin ) ) |
| 40 | 39 | 3ad2antl2 | |- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ d e. X ) ) -> ( c e. Fin /\ d e. Fin ) ) |
| 41 | sorpssi | |- ( ( [C.] Or X /\ ( c e. X /\ d e. X ) ) -> ( c C_ d \/ d C_ c ) ) |
|
| 42 | 41 | 3ad2antl1 | |- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ d e. X ) ) -> ( c C_ d \/ d C_ c ) ) |
| 43 | finnum | |- ( d e. Fin -> d e. dom card ) |
|
| 44 | carden2 | |- ( ( c e. dom card /\ d e. dom card ) -> ( ( card ` c ) = ( card ` d ) <-> c ~~ d ) ) |
|
| 45 | 14 43 44 | syl2an | |- ( ( c e. Fin /\ d e. Fin ) -> ( ( card ` c ) = ( card ` d ) <-> c ~~ d ) ) |
| 46 | 45 | adantr | |- ( ( ( c e. Fin /\ d e. Fin ) /\ ( c C_ d \/ d C_ c ) ) -> ( ( card ` c ) = ( card ` d ) <-> c ~~ d ) ) |
| 47 | fin23lem25 | |- ( ( c e. Fin /\ d e. Fin /\ ( c C_ d \/ d C_ c ) ) -> ( c ~~ d <-> c = d ) ) |
|
| 48 | 47 | 3expa | |- ( ( ( c e. Fin /\ d e. Fin ) /\ ( c C_ d \/ d C_ c ) ) -> ( c ~~ d <-> c = d ) ) |
| 49 | 48 | biimpd | |- ( ( ( c e. Fin /\ d e. Fin ) /\ ( c C_ d \/ d C_ c ) ) -> ( c ~~ d -> c = d ) ) |
| 50 | 46 49 | sylbid | |- ( ( ( c e. Fin /\ d e. Fin ) /\ ( c C_ d \/ d C_ c ) ) -> ( ( card ` c ) = ( card ` d ) -> c = d ) ) |
| 51 | 40 42 50 | syl2anc | |- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ d e. X ) ) -> ( ( card ` c ) = ( card ` d ) -> c = d ) ) |
| 52 | fveq2 | |- ( c = d -> ( card ` c ) = ( card ` d ) ) |
|
| 53 | 51 52 | impbid1 | |- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ d e. X ) ) -> ( ( card ` c ) = ( card ` d ) <-> c = d ) ) |
| 54 | 53 | ex | |- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( c e. X /\ d e. X ) -> ( ( card ` c ) = ( card ` d ) <-> c = d ) ) ) |
| 55 | 34 35 54 | syl2ani | |- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( c e. { b e. X | b ~<_ A } /\ d e. { b e. X | b ~<_ A } ) -> ( ( card ` c ) = ( card ` d ) <-> c = d ) ) ) |
| 56 | 33 55 | dom2d | |- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( suc A e. _om -> { b e. X | b ~<_ A } ~<_ suc A ) ) |
| 57 | 7 56 | mpd | |- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> { b e. X | b ~<_ A } ~<_ suc A ) |
| 58 | domfi | |- ( ( suc A e. Fin /\ { b e. X | b ~<_ A } ~<_ suc A ) -> { b e. X | b ~<_ A } e. Fin ) |
|
| 59 | 6 57 58 | syl2anc | |- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> { b e. X | b ~<_ A } e. Fin ) |