This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption law for filter generation. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fgabs | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) = ( 𝑋 filGen 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝐹 ∈ ( fBas ‘ 𝑌 ) ) | |
| 2 | fgcl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝐹 ) ∈ ( Fil ‘ 𝑌 ) ) | |
| 3 | filfbas | ⊢ ( ( 𝑌 filGen 𝐹 ) ∈ ( Fil ‘ 𝑌 ) → ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑌 ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑌 ) ) |
| 5 | fbsspw | ⊢ ( ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝐹 ) ⊆ 𝒫 𝑌 ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑌 filGen 𝐹 ) ⊆ 𝒫 𝑌 ) |
| 7 | simplr | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝑌 ⊆ 𝑋 ) | |
| 8 | 7 | sspwd | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝒫 𝑌 ⊆ 𝒫 𝑋 ) |
| 9 | 6 8 | sstrd | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑌 filGen 𝐹 ) ⊆ 𝒫 𝑋 ) |
| 10 | simpr | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝑋 ∈ V ) | |
| 11 | fbasweak | ⊢ ( ( ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑌 ) ∧ ( 𝑌 filGen 𝐹 ) ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V ) → ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ) | |
| 12 | 4 9 10 11 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ) |
| 13 | elfg | ⊢ ( ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ( 𝑌 filGen 𝐹 ) 𝑦 ⊆ 𝑥 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑥 ∈ ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ( 𝑌 filGen 𝐹 ) 𝑦 ⊆ 𝑥 ) ) ) |
| 15 | 1 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑌 ) ) |
| 16 | elfg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → ( 𝑦 ∈ ( 𝑌 filGen 𝐹 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑦 ∈ ( 𝑌 filGen 𝐹 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 ) ) ) |
| 18 | fbsspw | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → 𝐹 ⊆ 𝒫 𝑌 ) | |
| 19 | 1 18 | syl | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝐹 ⊆ 𝒫 𝑌 ) |
| 20 | 19 8 | sstrd | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 21 | fbasweak | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 22 | 1 20 10 21 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 23 | fgcl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ∧ 𝑦 ⊆ 𝑥 ) ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |
| 26 | ssfg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) | |
| 27 | 22 26 | syl | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
| 29 | 28 | sselda | ⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ 𝑧 ∈ 𝐹 ) → 𝑧 ∈ ( 𝑋 filGen 𝐹 ) ) |
| 30 | 29 | adantrr | ⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ) → 𝑧 ∈ ( 𝑋 filGen 𝐹 ) ) |
| 31 | 30 | adantrr | ⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑧 ∈ ( 𝑋 filGen 𝐹 ) ) |
| 32 | simplrl | ⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ⊆ 𝑋 ) | |
| 33 | simprlr | ⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑧 ⊆ 𝑦 ) | |
| 34 | simprr | ⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ⊆ 𝑥 ) | |
| 35 | 33 34 | sstrd | ⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑧 ⊆ 𝑥 ) |
| 36 | filss | ⊢ ( ( ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑧 ∈ ( 𝑋 filGen 𝐹 ) ∧ 𝑥 ⊆ 𝑋 ∧ 𝑧 ⊆ 𝑥 ) ) → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) | |
| 37 | 25 31 32 35 36 | syl13anc | ⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) |
| 38 | 37 | expr | ⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ 𝑦 ) ) → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) |
| 39 | 38 | rexlimdvaa | ⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) ) → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) ) |
| 40 | 39 | anassrs | ⊢ ( ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑦 ⊆ 𝑌 ) → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) ) |
| 41 | 40 | expimpd | ⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑦 ⊆ 𝑌 ∧ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 ) → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) ) |
| 42 | 17 41 | sylbid | ⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑦 ∈ ( 𝑌 filGen 𝐹 ) → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) ) |
| 43 | 42 | rexlimdv | ⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) ∧ 𝑥 ⊆ 𝑋 ) → ( ∃ 𝑦 ∈ ( 𝑌 filGen 𝐹 ) 𝑦 ⊆ 𝑥 → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) |
| 44 | 43 | expimpd | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ ( 𝑌 filGen 𝐹 ) 𝑦 ⊆ 𝑥 ) → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) |
| 45 | 14 44 | sylbid | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑥 ∈ ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) |
| 46 | 45 | ssrdv | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ⊆ ( 𝑋 filGen 𝐹 ) ) |
| 47 | ssfg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → 𝐹 ⊆ ( 𝑌 filGen 𝐹 ) ) | |
| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → 𝐹 ⊆ ( 𝑌 filGen 𝐹 ) ) |
| 49 | fgss | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑌 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ ( 𝑌 filGen 𝐹 ) ) → ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ) | |
| 50 | 22 12 48 49 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) ) |
| 51 | 46 50 | eqssd | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) = ( 𝑋 filGen 𝐹 ) ) |
| 52 | 51 | ex | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑋 ∈ V → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) = ( 𝑋 filGen 𝐹 ) ) ) |
| 53 | df-fg | ⊢ filGen = ( 𝑤 ∈ V , 𝑥 ∈ ( fBas ‘ 𝑤 ) ↦ { 𝑦 ∈ 𝒫 𝑤 ∣ ( 𝑥 ∩ 𝒫 𝑦 ) ≠ ∅ } ) | |
| 54 | 53 | reldmmpo | ⊢ Rel dom filGen |
| 55 | 54 | ovprc1 | ⊢ ( ¬ 𝑋 ∈ V → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) = ∅ ) |
| 56 | 54 | ovprc1 | ⊢ ( ¬ 𝑋 ∈ V → ( 𝑋 filGen 𝐹 ) = ∅ ) |
| 57 | 55 56 | eqtr4d | ⊢ ( ¬ 𝑋 ∈ V → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) = ( 𝑋 filGen 𝐹 ) ) |
| 58 | 52 57 | pm2.61d1 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑋 filGen ( 𝑌 filGen 𝐹 ) ) = ( 𝑋 filGen 𝐹 ) ) |