This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A fully faithful functor reflects isomorphisms. Corollary 3.32 of Adamek p. 35. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fthmon.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| fthmon.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| fthmon.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) | ||
| fthmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| fthmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| fthmon.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| ffthiso.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) | ||
| ffthiso.s | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| ffthiso.t | ⊢ 𝐽 = ( Iso ‘ 𝐷 ) | ||
| Assertion | ffthiso | ⊢ ( 𝜑 → ( 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fthmon.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | fthmon.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | fthmon.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) | |
| 4 | fthmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | fthmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | fthmon.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 7 | ffthiso.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) | |
| 8 | ffthiso.s | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 9 | ffthiso.t | ⊢ 𝐽 = ( Iso ‘ 𝐷 ) | |
| 10 | fthfunc | ⊢ ( 𝐶 Faith 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) | |
| 11 | 10 | ssbri | ⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 14 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 15 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 17 | 1 8 9 13 14 15 16 | funciso | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 18 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 19 | df-br | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 20 | 12 19 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 21 | funcrcl | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 23 | 22 | simpld | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 24 | 23 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝐶 ∈ Cat ) |
| 25 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝑋 ∈ 𝐵 ) |
| 26 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝑌 ∈ 𝐵 ) |
| 27 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 28 | eqid | ⊢ ( Inv ‘ 𝐷 ) = ( Inv ‘ 𝐷 ) | |
| 29 | 22 | simprd | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 30 | 1 27 12 | funcf1 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐷 ) ) |
| 31 | 30 4 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
| 32 | 30 5 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ ( Base ‘ 𝐷 ) ) |
| 33 | 27 28 29 31 32 9 | isoval | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) = dom ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 34 | 33 | eleq2d | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ dom ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 35 | 34 | biimpa | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ dom ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 36 | 27 28 29 31 32 | invfun | ⊢ ( 𝜑 → Fun ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → Fun ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 38 | funfvbrb | ⊢ ( Fun ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ dom ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ dom ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) ) |
| 40 | 35 39 | mpbid | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) |
| 41 | 40 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) |
| 42 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) | |
| 43 | 41 42 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) |
| 44 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
| 45 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 46 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) | |
| 47 | 1 2 44 25 26 45 46 18 28 | fthinv | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → ( 𝑅 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) 𝑓 ↔ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) ) |
| 48 | 43 47 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝑅 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) 𝑓 ) |
| 49 | 1 18 24 25 26 8 48 | inviso1 | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ∧ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) → 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 50 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 51 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) |
| 52 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 53 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 54 | 27 50 9 29 32 31 | isohom | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) ) ⊆ ( ( 𝐹 ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 55 | 54 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) ) ⊆ ( ( 𝐹 ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 56 | 27 28 29 31 32 9 | invf | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) : ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ⟶ ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
| 57 | 56 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ∈ ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
| 58 | 55 57 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ∈ ( ( 𝐹 ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 59 | 1 50 2 51 52 53 58 | fulli | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ∃ 𝑓 ∈ ( 𝑌 𝐻 𝑋 ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) |
| 60 | 49 59 | r19.29a | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 61 | 17 60 | impbida | ⊢ ( 𝜑 → ( 𝑅 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ) |