This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If G is an inverse to F , then F is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| invss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| isoval.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| inviso1.1 | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) | ||
| Assertion | inviso1 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 3 | invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | invss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | invss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | isoval.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 7 | inviso1.1 | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) | |
| 8 | 1 2 3 4 5 | invfun | ⊢ ( 𝜑 → Fun ( 𝑋 𝑁 𝑌 ) ) |
| 9 | funrel | ⊢ ( Fun ( 𝑋 𝑁 𝑌 ) → Rel ( 𝑋 𝑁 𝑌 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → Rel ( 𝑋 𝑁 𝑌 ) ) |
| 11 | releldm | ⊢ ( ( Rel ( 𝑋 𝑁 𝑌 ) ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) → 𝐹 ∈ dom ( 𝑋 𝑁 𝑌 ) ) | |
| 12 | 10 7 11 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ dom ( 𝑋 𝑁 𝑌 ) ) |
| 13 | 1 2 3 4 5 6 | isoval | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) ) |
| 14 | 12 13 | eleqtrrd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) |