This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of an isomorphism under a functor is an isomorphism. Proposition 3.21 of Adamek p. 32. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funciso.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| funciso.s | ⊢ 𝐼 = ( Iso ‘ 𝐷 ) | ||
| funciso.t | ⊢ 𝐽 = ( Iso ‘ 𝐸 ) | ||
| funciso.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| funciso.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| funciso.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| funciso.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
| Assertion | funciso | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funciso.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | funciso.s | ⊢ 𝐼 = ( Iso ‘ 𝐷 ) | |
| 3 | funciso.t | ⊢ 𝐽 = ( Iso ‘ 𝐸 ) | |
| 4 | funciso.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 5 | funciso.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | funciso.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | funciso.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 9 | eqid | ⊢ ( Inv ‘ 𝐸 ) = ( Inv ‘ 𝐸 ) | |
| 10 | df-br | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 11 | 4 10 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 12 | funcrcl | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 14 | 13 | simprd | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 15 | 1 8 4 | funcf1 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 ) ) |
| 16 | 15 5 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐸 ) ) |
| 17 | 15 6 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ ( Base ‘ 𝐸 ) ) |
| 18 | eqid | ⊢ ( Inv ‘ 𝐷 ) = ( Inv ‘ 𝐷 ) | |
| 19 | 13 | simpld | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 20 | 1 2 18 19 5 6 7 | invisoinvr | ⊢ ( 𝜑 → 𝑀 ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ‘ 𝑀 ) ) |
| 21 | 1 18 9 4 5 6 20 | funcinv | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ ( ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ‘ 𝑀 ) ) ) |
| 22 | 8 9 14 16 17 3 21 | inviso1 | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |