This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfull.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isfull.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| isfull.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| fullfo.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) | ||
| fullfo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| fullfo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| fulli.r | ⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | ||
| Assertion | fulli | ⊢ ( 𝜑 → ∃ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) 𝑅 = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfull.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isfull.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 3 | isfull.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | fullfo.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) | |
| 5 | fullfo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | fullfo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | fulli.r | ⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | |
| 8 | 1 2 3 4 5 6 | fullfo | ⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –onto→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 9 | foelrn | ⊢ ( ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –onto→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∧ 𝑅 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ∃ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) 𝑅 = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑓 ) ) | |
| 10 | 8 7 9 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) 𝑅 = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑓 ) ) |