This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| invss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| isoval.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| Assertion | invf | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) ⟶ ( 𝑌 𝐼 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 3 | invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | invss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | invss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | isoval.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 7 | 1 2 3 4 5 | invfun | ⊢ ( 𝜑 → Fun ( 𝑋 𝑁 𝑌 ) ) |
| 8 | 7 | funfnd | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) Fn dom ( 𝑋 𝑁 𝑌 ) ) |
| 9 | 1 2 3 4 5 6 | isoval | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) ) |
| 10 | 9 | fneq2d | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) Fn ( 𝑋 𝐼 𝑌 ) ↔ ( 𝑋 𝑁 𝑌 ) Fn dom ( 𝑋 𝑁 𝑌 ) ) ) |
| 11 | 8 10 | mpbird | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) Fn ( 𝑋 𝐼 𝑌 ) ) |
| 12 | df-rn | ⊢ ran ( 𝑋 𝑁 𝑌 ) = dom ◡ ( 𝑋 𝑁 𝑌 ) | |
| 13 | 1 2 3 4 5 | invsym2 | ⊢ ( 𝜑 → ◡ ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝑁 𝑋 ) ) |
| 14 | 13 | dmeqd | ⊢ ( 𝜑 → dom ◡ ( 𝑋 𝑁 𝑌 ) = dom ( 𝑌 𝑁 𝑋 ) ) |
| 15 | 1 2 3 5 4 6 | isoval | ⊢ ( 𝜑 → ( 𝑌 𝐼 𝑋 ) = dom ( 𝑌 𝑁 𝑋 ) ) |
| 16 | 14 15 | eqtr4d | ⊢ ( 𝜑 → dom ◡ ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝐼 𝑋 ) ) |
| 17 | 12 16 | eqtrid | ⊢ ( 𝜑 → ran ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝐼 𝑋 ) ) |
| 18 | eqimss | ⊢ ( ran ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝐼 𝑋 ) → ran ( 𝑋 𝑁 𝑌 ) ⊆ ( 𝑌 𝐼 𝑋 ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → ran ( 𝑋 𝑁 𝑌 ) ⊆ ( 𝑌 𝐼 𝑋 ) ) |
| 20 | df-f | ⊢ ( ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) ⟶ ( 𝑌 𝐼 𝑋 ) ↔ ( ( 𝑋 𝑁 𝑌 ) Fn ( 𝑋 𝐼 𝑌 ) ∧ ran ( 𝑋 𝑁 𝑌 ) ⊆ ( 𝑌 𝐼 𝑋 ) ) ) | |
| 21 | 11 19 20 | sylanbrc | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) ⟶ ( 𝑌 𝐼 𝑋 ) ) |