This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbasfip | |- ( F e. ( fBas ` X ) -> -. (/) e. ( fi ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( y e. ( ~P F i^i Fin ) <-> ( y e. ~P F /\ y e. Fin ) ) |
|
| 2 | elpwi | |- ( y e. ~P F -> y C_ F ) |
|
| 3 | 2 | anim1i | |- ( ( y e. ~P F /\ y e. Fin ) -> ( y C_ F /\ y e. Fin ) ) |
| 4 | 1 3 | sylbi | |- ( y e. ( ~P F i^i Fin ) -> ( y C_ F /\ y e. Fin ) ) |
| 5 | fbssint | |- ( ( F e. ( fBas ` X ) /\ y C_ F /\ y e. Fin ) -> E. z e. F z C_ |^| y ) |
|
| 6 | 5 | 3expb | |- ( ( F e. ( fBas ` X ) /\ ( y C_ F /\ y e. Fin ) ) -> E. z e. F z C_ |^| y ) |
| 7 | 4 6 | sylan2 | |- ( ( F e. ( fBas ` X ) /\ y e. ( ~P F i^i Fin ) ) -> E. z e. F z C_ |^| y ) |
| 8 | 0nelfb | |- ( F e. ( fBas ` X ) -> -. (/) e. F ) |
|
| 9 | 8 | ad2antrr | |- ( ( ( F e. ( fBas ` X ) /\ y e. ( ~P F i^i Fin ) ) /\ z e. F ) -> -. (/) e. F ) |
| 10 | eleq1 | |- ( z = (/) -> ( z e. F <-> (/) e. F ) ) |
|
| 11 | 10 | biimpcd | |- ( z e. F -> ( z = (/) -> (/) e. F ) ) |
| 12 | 11 | adantl | |- ( ( ( F e. ( fBas ` X ) /\ y e. ( ~P F i^i Fin ) ) /\ z e. F ) -> ( z = (/) -> (/) e. F ) ) |
| 13 | 9 12 | mtod | |- ( ( ( F e. ( fBas ` X ) /\ y e. ( ~P F i^i Fin ) ) /\ z e. F ) -> -. z = (/) ) |
| 14 | ss0 | |- ( z C_ (/) -> z = (/) ) |
|
| 15 | 13 14 | nsyl | |- ( ( ( F e. ( fBas ` X ) /\ y e. ( ~P F i^i Fin ) ) /\ z e. F ) -> -. z C_ (/) ) |
| 16 | 15 | adantrr | |- ( ( ( F e. ( fBas ` X ) /\ y e. ( ~P F i^i Fin ) ) /\ ( z e. F /\ z C_ |^| y ) ) -> -. z C_ (/) ) |
| 17 | sseq2 | |- ( (/) = |^| y -> ( z C_ (/) <-> z C_ |^| y ) ) |
|
| 18 | 17 | biimprcd | |- ( z C_ |^| y -> ( (/) = |^| y -> z C_ (/) ) ) |
| 19 | 18 | ad2antll | |- ( ( ( F e. ( fBas ` X ) /\ y e. ( ~P F i^i Fin ) ) /\ ( z e. F /\ z C_ |^| y ) ) -> ( (/) = |^| y -> z C_ (/) ) ) |
| 20 | 16 19 | mtod | |- ( ( ( F e. ( fBas ` X ) /\ y e. ( ~P F i^i Fin ) ) /\ ( z e. F /\ z C_ |^| y ) ) -> -. (/) = |^| y ) |
| 21 | 7 20 | rexlimddv | |- ( ( F e. ( fBas ` X ) /\ y e. ( ~P F i^i Fin ) ) -> -. (/) = |^| y ) |
| 22 | 21 | nrexdv | |- ( F e. ( fBas ` X ) -> -. E. y e. ( ~P F i^i Fin ) (/) = |^| y ) |
| 23 | 0ex | |- (/) e. _V |
|
| 24 | elfi | |- ( ( (/) e. _V /\ F e. ( fBas ` X ) ) -> ( (/) e. ( fi ` F ) <-> E. y e. ( ~P F i^i Fin ) (/) = |^| y ) ) |
|
| 25 | 23 24 | mpan | |- ( F e. ( fBas ` X ) -> ( (/) e. ( fi ` F ) <-> E. y e. ( ~P F i^i Fin ) (/) = |^| y ) ) |
| 26 | 22 25 | mtbird | |- ( F e. ( fBas ` X ) -> -. (/) e. ( fi ` F ) ) |