This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for faclbnd4 . Prove the 0 < N case by induction on K . (Contributed by NM, 19-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | faclbnd4lem4 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑛 = 𝑚 → ( 𝑛 ↑ 𝑗 ) = ( 𝑚 ↑ 𝑗 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝑀 ↑ 𝑛 ) = ( 𝑀 ↑ 𝑚 ) ) | |
| 3 | 1 2 | oveq12d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑛 ) ) = ( ( 𝑚 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑚 ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑚 ) ) | |
| 5 | 4 | oveq2d | ⊢ ( 𝑛 = 𝑚 → ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑛 ) ) = ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑚 ) ) ) |
| 6 | 3 5 | breq12d | ⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑛 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑛 ) ) ↔ ( ( 𝑚 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑚 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑚 ) ) ) ) |
| 7 | 6 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑛 ) ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑚 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑚 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑚 ) ) ) |
| 8 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 9 | 1re | ⊢ 1 ∈ ℝ | |
| 10 | lelttric | ⊢ ( ( 𝑛 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑛 ≤ 1 ∨ 1 < 𝑛 ) ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ≤ 1 ∨ 1 < 𝑛 ) ) |
| 12 | 11 | ancli | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℕ ∧ ( 𝑛 ≤ 1 ∨ 1 < 𝑛 ) ) ) |
| 13 | andi | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 ≤ 1 ∨ 1 < 𝑛 ) ) ↔ ( ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 1 ) ∨ ( 𝑛 ∈ ℕ ∧ 1 < 𝑛 ) ) ) | |
| 14 | 12 13 | sylib | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 1 ) ∨ ( 𝑛 ∈ ℕ ∧ 1 < 𝑛 ) ) ) |
| 15 | nnge1 | ⊢ ( 𝑛 ∈ ℕ → 1 ≤ 𝑛 ) | |
| 16 | letri3 | ⊢ ( ( 𝑛 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑛 = 1 ↔ ( 𝑛 ≤ 1 ∧ 1 ≤ 𝑛 ) ) ) | |
| 17 | 8 9 16 | sylancl | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 = 1 ↔ ( 𝑛 ≤ 1 ∧ 1 ≤ 𝑛 ) ) ) |
| 18 | 17 | biimpar | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 ≤ 1 ∧ 1 ≤ 𝑛 ) ) → 𝑛 = 1 ) |
| 19 | 18 | anassrs | ⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 1 ) ∧ 1 ≤ 𝑛 ) → 𝑛 = 1 ) |
| 20 | 15 19 | mpidan | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 1 ) → 𝑛 = 1 ) |
| 21 | oveq1 | ⊢ ( 𝑛 = 1 → ( 𝑛 − 1 ) = ( 1 − 1 ) ) | |
| 22 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 23 | 21 22 | eqtrdi | ⊢ ( 𝑛 = 1 → ( 𝑛 − 1 ) = 0 ) |
| 24 | 20 23 | syl | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 1 ) → ( 𝑛 − 1 ) = 0 ) |
| 25 | faclbnd4lem3 | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝑛 − 1 ) = 0 ) → ( ( ( 𝑛 − 1 ) ↑ 𝑗 ) · ( 𝑀 ↑ ( 𝑛 − 1 ) ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ ( 𝑛 − 1 ) ) ) ) | |
| 26 | 24 25 | sylan2 | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 1 ) ) → ( ( ( 𝑛 − 1 ) ↑ 𝑗 ) · ( 𝑀 ↑ ( 𝑛 − 1 ) ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ ( 𝑛 − 1 ) ) ) ) |
| 27 | 26 | a1d | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 1 ) ) → ( ∀ 𝑚 ∈ ℕ ( ( 𝑚 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑚 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑚 ) ) → ( ( ( 𝑛 − 1 ) ↑ 𝑗 ) · ( 𝑀 ↑ ( 𝑛 − 1 ) ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
| 28 | 1nn | ⊢ 1 ∈ ℕ | |
| 29 | nnsub | ⊢ ( ( 1 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 1 < 𝑛 ↔ ( 𝑛 − 1 ) ∈ ℕ ) ) | |
| 30 | 28 29 | mpan | ⊢ ( 𝑛 ∈ ℕ → ( 1 < 𝑛 ↔ ( 𝑛 − 1 ) ∈ ℕ ) ) |
| 31 | 30 | biimpa | ⊢ ( ( 𝑛 ∈ ℕ ∧ 1 < 𝑛 ) → ( 𝑛 − 1 ) ∈ ℕ ) |
| 32 | oveq1 | ⊢ ( 𝑚 = ( 𝑛 − 1 ) → ( 𝑚 ↑ 𝑗 ) = ( ( 𝑛 − 1 ) ↑ 𝑗 ) ) | |
| 33 | oveq2 | ⊢ ( 𝑚 = ( 𝑛 − 1 ) → ( 𝑀 ↑ 𝑚 ) = ( 𝑀 ↑ ( 𝑛 − 1 ) ) ) | |
| 34 | 32 33 | oveq12d | ⊢ ( 𝑚 = ( 𝑛 − 1 ) → ( ( 𝑚 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑚 ) ) = ( ( ( 𝑛 − 1 ) ↑ 𝑗 ) · ( 𝑀 ↑ ( 𝑛 − 1 ) ) ) ) |
| 35 | fveq2 | ⊢ ( 𝑚 = ( 𝑛 − 1 ) → ( ! ‘ 𝑚 ) = ( ! ‘ ( 𝑛 − 1 ) ) ) | |
| 36 | 35 | oveq2d | ⊢ ( 𝑚 = ( 𝑛 − 1 ) → ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑚 ) ) = ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ ( 𝑛 − 1 ) ) ) ) |
| 37 | 34 36 | breq12d | ⊢ ( 𝑚 = ( 𝑛 − 1 ) → ( ( ( 𝑚 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑚 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑚 ) ) ↔ ( ( ( 𝑛 − 1 ) ↑ 𝑗 ) · ( 𝑀 ↑ ( 𝑛 − 1 ) ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
| 38 | 37 | rspcv | ⊢ ( ( 𝑛 − 1 ) ∈ ℕ → ( ∀ 𝑚 ∈ ℕ ( ( 𝑚 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑚 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑚 ) ) → ( ( ( 𝑛 − 1 ) ↑ 𝑗 ) · ( 𝑀 ↑ ( 𝑛 − 1 ) ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
| 39 | 31 38 | syl | ⊢ ( ( 𝑛 ∈ ℕ ∧ 1 < 𝑛 ) → ( ∀ 𝑚 ∈ ℕ ( ( 𝑚 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑚 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑚 ) ) → ( ( ( 𝑛 − 1 ) ↑ 𝑗 ) · ( 𝑀 ↑ ( 𝑛 − 1 ) ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
| 40 | 39 | adantl | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ℕ ∧ 1 < 𝑛 ) ) → ( ∀ 𝑚 ∈ ℕ ( ( 𝑚 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑚 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑚 ) ) → ( ( ( 𝑛 − 1 ) ↑ 𝑗 ) · ( 𝑀 ↑ ( 𝑛 − 1 ) ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
| 41 | 27 40 | jaodan | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 1 ) ∨ ( 𝑛 ∈ ℕ ∧ 1 < 𝑛 ) ) ) → ( ∀ 𝑚 ∈ ℕ ( ( 𝑚 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑚 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑚 ) ) → ( ( ( 𝑛 − 1 ) ↑ 𝑗 ) · ( 𝑀 ↑ ( 𝑛 − 1 ) ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
| 42 | 14 41 | sylan2 | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑚 ∈ ℕ ( ( 𝑚 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑚 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑚 ) ) → ( ( ( 𝑛 − 1 ) ↑ 𝑗 ) · ( 𝑀 ↑ ( 𝑛 − 1 ) ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
| 43 | faclbnd4lem2 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ( ( 𝑛 − 1 ) ↑ 𝑗 ) · ( 𝑀 ↑ ( 𝑛 − 1 ) ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ ( 𝑛 − 1 ) ) ) → ( ( 𝑛 ↑ ( 𝑗 + 1 ) ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + ( 𝑗 + 1 ) ) ) ) · ( ! ‘ 𝑛 ) ) ) ) | |
| 44 | 43 | 3expa | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( ( 𝑛 − 1 ) ↑ 𝑗 ) · ( 𝑀 ↑ ( 𝑛 − 1 ) ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ ( 𝑛 − 1 ) ) ) → ( ( 𝑛 ↑ ( 𝑗 + 1 ) ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + ( 𝑗 + 1 ) ) ) ) · ( ! ‘ 𝑛 ) ) ) ) |
| 45 | 42 44 | syld | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑚 ∈ ℕ ( ( 𝑚 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑚 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑚 ) ) → ( ( 𝑛 ↑ ( 𝑗 + 1 ) ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + ( 𝑗 + 1 ) ) ) ) · ( ! ‘ 𝑛 ) ) ) ) |
| 46 | 45 | ralrimdva | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) → ( ∀ 𝑚 ∈ ℕ ( ( 𝑚 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑚 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑚 ) ) → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ ( 𝑗 + 1 ) ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + ( 𝑗 + 1 ) ) ) ) · ( ! ‘ 𝑛 ) ) ) ) |
| 47 | 7 46 | biimtrid | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) → ( ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑛 ) ) → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ ( 𝑗 + 1 ) ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + ( 𝑗 + 1 ) ) ) ) · ( ! ‘ 𝑛 ) ) ) ) |
| 48 | 47 | expcom | ⊢ ( 𝑗 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑛 ) ) → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ ( 𝑗 + 1 ) ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + ( 𝑗 + 1 ) ) ) ) · ( ! ‘ 𝑛 ) ) ) ) ) |
| 49 | 48 | a2d | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑀 ∈ ℕ0 → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑛 ) ) ) → ( 𝑀 ∈ ℕ0 → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ ( 𝑗 + 1 ) ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + ( 𝑗 + 1 ) ) ) ) · ( ! ‘ 𝑛 ) ) ) ) ) |
| 50 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 51 | faclbnd3 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑛 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑛 ) ) ) | |
| 52 | 50 51 | sylan2 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ↑ 𝑛 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑛 ) ) ) |
| 53 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 54 | 53 | exp0d | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 0 ) = 1 ) |
| 55 | 54 | oveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 0 ) · ( 𝑀 ↑ 𝑛 ) ) = ( 1 · ( 𝑀 ↑ 𝑛 ) ) ) |
| 56 | 55 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ↑ 0 ) · ( 𝑀 ↑ 𝑛 ) ) = ( 1 · ( 𝑀 ↑ 𝑛 ) ) ) |
| 57 | nn0cn | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) | |
| 58 | expcl | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑛 ) ∈ ℂ ) | |
| 59 | 57 50 58 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ↑ 𝑛 ) ∈ ℂ ) |
| 60 | 59 | mullidd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 1 · ( 𝑀 ↑ 𝑛 ) ) = ( 𝑀 ↑ 𝑛 ) ) |
| 61 | 56 60 | eqtrd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ↑ 0 ) · ( 𝑀 ↑ 𝑛 ) ) = ( 𝑀 ↑ 𝑛 ) ) |
| 62 | sq0 | ⊢ ( 0 ↑ 2 ) = 0 | |
| 63 | 62 | oveq2i | ⊢ ( 2 ↑ ( 0 ↑ 2 ) ) = ( 2 ↑ 0 ) |
| 64 | 2cn | ⊢ 2 ∈ ℂ | |
| 65 | exp0 | ⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) | |
| 66 | 64 65 | ax-mp | ⊢ ( 2 ↑ 0 ) = 1 |
| 67 | 63 66 | eqtri | ⊢ ( 2 ↑ ( 0 ↑ 2 ) ) = 1 |
| 68 | 67 | a1i | ⊢ ( 𝑀 ∈ ℕ0 → ( 2 ↑ ( 0 ↑ 2 ) ) = 1 ) |
| 69 | 57 | addridd | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 0 ) = 𝑀 ) |
| 70 | 69 | oveq2d | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ↑ ( 𝑀 + 0 ) ) = ( 𝑀 ↑ 𝑀 ) ) |
| 71 | 68 70 | oveq12d | ⊢ ( 𝑀 ∈ ℕ0 → ( ( 2 ↑ ( 0 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) = ( 1 · ( 𝑀 ↑ 𝑀 ) ) ) |
| 72 | expcl | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑀 ) ∈ ℂ ) | |
| 73 | 57 72 | mpancom | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ↑ 𝑀 ) ∈ ℂ ) |
| 74 | 73 | mullidd | ⊢ ( 𝑀 ∈ ℕ0 → ( 1 · ( 𝑀 ↑ 𝑀 ) ) = ( 𝑀 ↑ 𝑀 ) ) |
| 75 | 71 74 | eqtrd | ⊢ ( 𝑀 ∈ ℕ0 → ( ( 2 ↑ ( 0 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) = ( 𝑀 ↑ 𝑀 ) ) |
| 76 | 75 | oveq1d | ⊢ ( 𝑀 ∈ ℕ0 → ( ( ( 2 ↑ ( 0 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) · ( ! ‘ 𝑛 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑛 ) ) ) |
| 77 | 76 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ( 2 ↑ ( 0 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) · ( ! ‘ 𝑛 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑛 ) ) ) |
| 78 | 52 61 77 | 3brtr4d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ↑ 0 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 0 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) · ( ! ‘ 𝑛 ) ) ) |
| 79 | 78 | ralrimiva | ⊢ ( 𝑀 ∈ ℕ0 → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 0 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 0 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) · ( ! ‘ 𝑛 ) ) ) |
| 80 | oveq2 | ⊢ ( 𝑚 = 0 → ( 𝑛 ↑ 𝑚 ) = ( 𝑛 ↑ 0 ) ) | |
| 81 | 80 | oveq1d | ⊢ ( 𝑚 = 0 → ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) = ( ( 𝑛 ↑ 0 ) · ( 𝑀 ↑ 𝑛 ) ) ) |
| 82 | oveq1 | ⊢ ( 𝑚 = 0 → ( 𝑚 ↑ 2 ) = ( 0 ↑ 2 ) ) | |
| 83 | 82 | oveq2d | ⊢ ( 𝑚 = 0 → ( 2 ↑ ( 𝑚 ↑ 2 ) ) = ( 2 ↑ ( 0 ↑ 2 ) ) ) |
| 84 | oveq2 | ⊢ ( 𝑚 = 0 → ( 𝑀 + 𝑚 ) = ( 𝑀 + 0 ) ) | |
| 85 | 84 | oveq2d | ⊢ ( 𝑚 = 0 → ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) = ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) |
| 86 | 83 85 | oveq12d | ⊢ ( 𝑚 = 0 → ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) = ( ( 2 ↑ ( 0 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ) |
| 87 | 86 | oveq1d | ⊢ ( 𝑚 = 0 → ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) = ( ( ( 2 ↑ ( 0 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) · ( ! ‘ 𝑛 ) ) ) |
| 88 | 81 87 | breq12d | ⊢ ( 𝑚 = 0 → ( ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) ↔ ( ( 𝑛 ↑ 0 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 0 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) · ( ! ‘ 𝑛 ) ) ) ) |
| 89 | 88 | ralbidv | ⊢ ( 𝑚 = 0 → ( ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) ↔ ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 0 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 0 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) · ( ! ‘ 𝑛 ) ) ) ) |
| 90 | 89 | imbi2d | ⊢ ( 𝑚 = 0 → ( ( 𝑀 ∈ ℕ0 → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) ) ↔ ( 𝑀 ∈ ℕ0 → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 0 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 0 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) · ( ! ‘ 𝑛 ) ) ) ) ) |
| 91 | oveq2 | ⊢ ( 𝑚 = 𝑗 → ( 𝑛 ↑ 𝑚 ) = ( 𝑛 ↑ 𝑗 ) ) | |
| 92 | 91 | oveq1d | ⊢ ( 𝑚 = 𝑗 → ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) = ( ( 𝑛 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑛 ) ) ) |
| 93 | oveq1 | ⊢ ( 𝑚 = 𝑗 → ( 𝑚 ↑ 2 ) = ( 𝑗 ↑ 2 ) ) | |
| 94 | 93 | oveq2d | ⊢ ( 𝑚 = 𝑗 → ( 2 ↑ ( 𝑚 ↑ 2 ) ) = ( 2 ↑ ( 𝑗 ↑ 2 ) ) ) |
| 95 | oveq2 | ⊢ ( 𝑚 = 𝑗 → ( 𝑀 + 𝑚 ) = ( 𝑀 + 𝑗 ) ) | |
| 96 | 95 | oveq2d | ⊢ ( 𝑚 = 𝑗 → ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) = ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) |
| 97 | 94 96 | oveq12d | ⊢ ( 𝑚 = 𝑗 → ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) = ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) ) |
| 98 | 97 | oveq1d | ⊢ ( 𝑚 = 𝑗 → ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) = ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑛 ) ) ) |
| 99 | 92 98 | breq12d | ⊢ ( 𝑚 = 𝑗 → ( ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) ↔ ( ( 𝑛 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑛 ) ) ) ) |
| 100 | 99 | ralbidv | ⊢ ( 𝑚 = 𝑗 → ( ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) ↔ ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑛 ) ) ) ) |
| 101 | 100 | imbi2d | ⊢ ( 𝑚 = 𝑗 → ( ( 𝑀 ∈ ℕ0 → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) ) ↔ ( 𝑀 ∈ ℕ0 → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝑗 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑗 ) ) ) · ( ! ‘ 𝑛 ) ) ) ) ) |
| 102 | oveq2 | ⊢ ( 𝑚 = ( 𝑗 + 1 ) → ( 𝑛 ↑ 𝑚 ) = ( 𝑛 ↑ ( 𝑗 + 1 ) ) ) | |
| 103 | 102 | oveq1d | ⊢ ( 𝑚 = ( 𝑗 + 1 ) → ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) = ( ( 𝑛 ↑ ( 𝑗 + 1 ) ) · ( 𝑀 ↑ 𝑛 ) ) ) |
| 104 | oveq1 | ⊢ ( 𝑚 = ( 𝑗 + 1 ) → ( 𝑚 ↑ 2 ) = ( ( 𝑗 + 1 ) ↑ 2 ) ) | |
| 105 | 104 | oveq2d | ⊢ ( 𝑚 = ( 𝑗 + 1 ) → ( 2 ↑ ( 𝑚 ↑ 2 ) ) = ( 2 ↑ ( ( 𝑗 + 1 ) ↑ 2 ) ) ) |
| 106 | oveq2 | ⊢ ( 𝑚 = ( 𝑗 + 1 ) → ( 𝑀 + 𝑚 ) = ( 𝑀 + ( 𝑗 + 1 ) ) ) | |
| 107 | 106 | oveq2d | ⊢ ( 𝑚 = ( 𝑗 + 1 ) → ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) = ( 𝑀 ↑ ( 𝑀 + ( 𝑗 + 1 ) ) ) ) |
| 108 | 105 107 | oveq12d | ⊢ ( 𝑚 = ( 𝑗 + 1 ) → ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) = ( ( 2 ↑ ( ( 𝑗 + 1 ) ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + ( 𝑗 + 1 ) ) ) ) ) |
| 109 | 108 | oveq1d | ⊢ ( 𝑚 = ( 𝑗 + 1 ) → ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) = ( ( ( 2 ↑ ( ( 𝑗 + 1 ) ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + ( 𝑗 + 1 ) ) ) ) · ( ! ‘ 𝑛 ) ) ) |
| 110 | 103 109 | breq12d | ⊢ ( 𝑚 = ( 𝑗 + 1 ) → ( ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) ↔ ( ( 𝑛 ↑ ( 𝑗 + 1 ) ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + ( 𝑗 + 1 ) ) ) ) · ( ! ‘ 𝑛 ) ) ) ) |
| 111 | 110 | ralbidv | ⊢ ( 𝑚 = ( 𝑗 + 1 ) → ( ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) ↔ ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ ( 𝑗 + 1 ) ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + ( 𝑗 + 1 ) ) ) ) · ( ! ‘ 𝑛 ) ) ) ) |
| 112 | 111 | imbi2d | ⊢ ( 𝑚 = ( 𝑗 + 1 ) → ( ( 𝑀 ∈ ℕ0 → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) ) ↔ ( 𝑀 ∈ ℕ0 → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ ( 𝑗 + 1 ) ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + ( 𝑗 + 1 ) ) ) ) · ( ! ‘ 𝑛 ) ) ) ) ) |
| 113 | oveq2 | ⊢ ( 𝑚 = 𝐾 → ( 𝑛 ↑ 𝑚 ) = ( 𝑛 ↑ 𝐾 ) ) | |
| 114 | 113 | oveq1d | ⊢ ( 𝑚 = 𝐾 → ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) = ( ( 𝑛 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑛 ) ) ) |
| 115 | oveq1 | ⊢ ( 𝑚 = 𝐾 → ( 𝑚 ↑ 2 ) = ( 𝐾 ↑ 2 ) ) | |
| 116 | 115 | oveq2d | ⊢ ( 𝑚 = 𝐾 → ( 2 ↑ ( 𝑚 ↑ 2 ) ) = ( 2 ↑ ( 𝐾 ↑ 2 ) ) ) |
| 117 | oveq2 | ⊢ ( 𝑚 = 𝐾 → ( 𝑀 + 𝑚 ) = ( 𝑀 + 𝐾 ) ) | |
| 118 | 117 | oveq2d | ⊢ ( 𝑚 = 𝐾 → ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) = ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) |
| 119 | 116 118 | oveq12d | ⊢ ( 𝑚 = 𝐾 → ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) = ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ) |
| 120 | 119 | oveq1d | ⊢ ( 𝑚 = 𝐾 → ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) = ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑛 ) ) ) |
| 121 | 114 120 | breq12d | ⊢ ( 𝑚 = 𝐾 → ( ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) ↔ ( ( 𝑛 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑛 ) ) ) ) |
| 122 | 121 | ralbidv | ⊢ ( 𝑚 = 𝐾 → ( ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) ↔ ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑛 ) ) ) ) |
| 123 | 122 | imbi2d | ⊢ ( 𝑚 = 𝐾 → ( ( 𝑀 ∈ ℕ0 → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝑚 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝑚 ) ) ) · ( ! ‘ 𝑛 ) ) ) ↔ ( 𝑀 ∈ ℕ0 → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑛 ) ) ) ) ) |
| 124 | 49 79 90 101 112 123 | nn0indALT | ⊢ ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑛 ) ) ) ) |
| 125 | 124 | imp | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑛 ) ) ) |
| 126 | oveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ↑ 𝐾 ) = ( 𝑁 ↑ 𝐾 ) ) | |
| 127 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 𝑀 ↑ 𝑛 ) = ( 𝑀 ↑ 𝑁 ) ) | |
| 128 | 126 127 | oveq12d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑛 ) ) = ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) ) |
| 129 | fveq2 | ⊢ ( 𝑛 = 𝑁 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑁 ) ) | |
| 130 | 129 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑛 ) ) = ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) ) |
| 131 | 128 130 | breq12d | ⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑛 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑛 ) ) ↔ ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) ) ) |
| 132 | 131 | rspcva | ⊢ ( ( 𝑁 ∈ ℕ ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑛 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑛 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑛 ) ) ) → ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) ) |
| 133 | 125 132 | sylan2 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ) → ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) ) |
| 134 | 133 | 3impb | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) ) |