This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for faclbnd4 . The N = 0 case. (Contributed by NM, 23-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | faclbnd4lem3 | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑁 = 0 ) → ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝐾 ∈ ℕ0 ↔ ( 𝐾 ∈ ℕ ∨ 𝐾 = 0 ) ) | |
| 2 | 0exp | ⊢ ( 𝐾 ∈ ℕ → ( 0 ↑ 𝐾 ) = 0 ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ ) → ( 0 ↑ 𝐾 ) = 0 ) |
| 4 | nnnn0 | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ0 ) | |
| 5 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 6 | nn0sqcl | ⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 ↑ 2 ) ∈ ℕ0 ) | |
| 7 | nn0expcl | ⊢ ( ( 2 ∈ ℕ0 ∧ ( 𝐾 ↑ 2 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝐾 ↑ 2 ) ) ∈ ℕ0 ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( 𝐾 ∈ ℕ0 → ( 2 ↑ ( 𝐾 ↑ 2 ) ) ∈ ℕ0 ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 2 ↑ ( 𝐾 ↑ 2 ) ) ∈ ℕ0 ) |
| 10 | nn0addcl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 + 𝐾 ) ∈ ℕ0 ) | |
| 11 | nn0expcl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ ( 𝑀 + 𝐾 ) ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ∈ ℕ0 ) | |
| 12 | 10 11 | syldan | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ∈ ℕ0 ) |
| 13 | 9 12 | nn0mulcld | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ∈ ℕ0 ) |
| 14 | 4 13 | sylan2 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ ) → ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ∈ ℕ0 ) |
| 15 | 14 | nn0ge0d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ ) → 0 ≤ ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ) |
| 16 | 3 15 | eqbrtrd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ ) → ( 0 ↑ 𝐾 ) ≤ ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ) |
| 17 | 1nn | ⊢ 1 ∈ ℕ | |
| 18 | elnn0 | ⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) | |
| 19 | nnnn0 | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) | |
| 20 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 21 | nn0addcl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( 𝑀 + 0 ) ∈ ℕ0 ) | |
| 22 | 19 20 21 | sylancl | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 0 ) ∈ ℕ0 ) |
| 23 | nnexpcl | ⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑀 + 0 ) ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑀 + 0 ) ) ∈ ℕ ) | |
| 24 | 22 23 | mpdan | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑀 + 0 ) ) ∈ ℕ ) |
| 25 | id | ⊢ ( 𝑀 = 0 → 𝑀 = 0 ) | |
| 26 | oveq1 | ⊢ ( 𝑀 = 0 → ( 𝑀 + 0 ) = ( 0 + 0 ) ) | |
| 27 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 28 | 26 27 | eqtrdi | ⊢ ( 𝑀 = 0 → ( 𝑀 + 0 ) = 0 ) |
| 29 | 25 28 | oveq12d | ⊢ ( 𝑀 = 0 → ( 𝑀 ↑ ( 𝑀 + 0 ) ) = ( 0 ↑ 0 ) ) |
| 30 | 0exp0e1 | ⊢ ( 0 ↑ 0 ) = 1 | |
| 31 | 29 30 | eqtrdi | ⊢ ( 𝑀 = 0 → ( 𝑀 ↑ ( 𝑀 + 0 ) ) = 1 ) |
| 32 | 31 17 | eqeltrdi | ⊢ ( 𝑀 = 0 → ( 𝑀 ↑ ( 𝑀 + 0 ) ) ∈ ℕ ) |
| 33 | 24 32 | jaoi | ⊢ ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) → ( 𝑀 ↑ ( 𝑀 + 0 ) ) ∈ ℕ ) |
| 34 | 18 33 | sylbi | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ↑ ( 𝑀 + 0 ) ) ∈ ℕ ) |
| 35 | nnmulcl | ⊢ ( ( 1 ∈ ℕ ∧ ( 𝑀 ↑ ( 𝑀 + 0 ) ) ∈ ℕ ) → ( 1 · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ∈ ℕ ) | |
| 36 | 17 34 35 | sylancr | ⊢ ( 𝑀 ∈ ℕ0 → ( 1 · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ∈ ℕ ) |
| 37 | 36 | nnge1d | ⊢ ( 𝑀 ∈ ℕ0 → 1 ≤ ( 1 · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 = 0 ) → 1 ≤ ( 1 · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ) |
| 39 | oveq2 | ⊢ ( 𝐾 = 0 → ( 0 ↑ 𝐾 ) = ( 0 ↑ 0 ) ) | |
| 40 | 39 30 | eqtrdi | ⊢ ( 𝐾 = 0 → ( 0 ↑ 𝐾 ) = 1 ) |
| 41 | sq0i | ⊢ ( 𝐾 = 0 → ( 𝐾 ↑ 2 ) = 0 ) | |
| 42 | 41 | oveq2d | ⊢ ( 𝐾 = 0 → ( 2 ↑ ( 𝐾 ↑ 2 ) ) = ( 2 ↑ 0 ) ) |
| 43 | 2cn | ⊢ 2 ∈ ℂ | |
| 44 | exp0 | ⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) | |
| 45 | 43 44 | ax-mp | ⊢ ( 2 ↑ 0 ) = 1 |
| 46 | 42 45 | eqtrdi | ⊢ ( 𝐾 = 0 → ( 2 ↑ ( 𝐾 ↑ 2 ) ) = 1 ) |
| 47 | oveq2 | ⊢ ( 𝐾 = 0 → ( 𝑀 + 𝐾 ) = ( 𝑀 + 0 ) ) | |
| 48 | 47 | oveq2d | ⊢ ( 𝐾 = 0 → ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) = ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) |
| 49 | 46 48 | oveq12d | ⊢ ( 𝐾 = 0 → ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) = ( 1 · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ) |
| 50 | 40 49 | breq12d | ⊢ ( 𝐾 = 0 → ( ( 0 ↑ 𝐾 ) ≤ ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ↔ 1 ≤ ( 1 · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ) ) |
| 51 | 50 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 = 0 ) → ( ( 0 ↑ 𝐾 ) ≤ ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ↔ 1 ≤ ( 1 · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ) ) |
| 52 | 38 51 | mpbird | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 = 0 ) → ( 0 ↑ 𝐾 ) ≤ ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ) |
| 53 | 16 52 | jaodan | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ ( 𝐾 ∈ ℕ ∨ 𝐾 = 0 ) ) → ( 0 ↑ 𝐾 ) ≤ ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ) |
| 54 | 1 53 | sylan2b | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 0 ↑ 𝐾 ) ≤ ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ) |
| 55 | nn0cn | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) | |
| 56 | 55 | exp0d | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ↑ 0 ) = 1 ) |
| 57 | 56 | oveq2d | ⊢ ( 𝑀 ∈ ℕ0 → ( ( 0 ↑ 𝐾 ) · ( 𝑀 ↑ 0 ) ) = ( ( 0 ↑ 𝐾 ) · 1 ) ) |
| 58 | nn0expcl | ⊢ ( ( 0 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 0 ↑ 𝐾 ) ∈ ℕ0 ) | |
| 59 | 20 58 | mpan | ⊢ ( 𝐾 ∈ ℕ0 → ( 0 ↑ 𝐾 ) ∈ ℕ0 ) |
| 60 | 59 | nn0cnd | ⊢ ( 𝐾 ∈ ℕ0 → ( 0 ↑ 𝐾 ) ∈ ℂ ) |
| 61 | 60 | mulridd | ⊢ ( 𝐾 ∈ ℕ0 → ( ( 0 ↑ 𝐾 ) · 1 ) = ( 0 ↑ 𝐾 ) ) |
| 62 | 57 61 | sylan9eq | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( 0 ↑ 𝐾 ) · ( 𝑀 ↑ 0 ) ) = ( 0 ↑ 𝐾 ) ) |
| 63 | 13 | nn0cnd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ∈ ℂ ) |
| 64 | 63 | mulridd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · 1 ) = ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ) |
| 65 | 54 62 64 | 3brtr4d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( 0 ↑ 𝐾 ) · ( 𝑀 ↑ 0 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · 1 ) ) |
| 66 | 65 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑁 = 0 ) → ( ( 0 ↑ 𝐾 ) · ( 𝑀 ↑ 0 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · 1 ) ) |
| 67 | oveq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 ↑ 𝐾 ) = ( 0 ↑ 𝐾 ) ) | |
| 68 | oveq2 | ⊢ ( 𝑁 = 0 → ( 𝑀 ↑ 𝑁 ) = ( 𝑀 ↑ 0 ) ) | |
| 69 | 67 68 | oveq12d | ⊢ ( 𝑁 = 0 → ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) = ( ( 0 ↑ 𝐾 ) · ( 𝑀 ↑ 0 ) ) ) |
| 70 | fveq2 | ⊢ ( 𝑁 = 0 → ( ! ‘ 𝑁 ) = ( ! ‘ 0 ) ) | |
| 71 | fac0 | ⊢ ( ! ‘ 0 ) = 1 | |
| 72 | 70 71 | eqtrdi | ⊢ ( 𝑁 = 0 → ( ! ‘ 𝑁 ) = 1 ) |
| 73 | 72 | oveq2d | ⊢ ( 𝑁 = 0 → ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) = ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · 1 ) ) |
| 74 | 69 73 | breq12d | ⊢ ( 𝑁 = 0 → ( ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) ↔ ( ( 0 ↑ 𝐾 ) · ( 𝑀 ↑ 0 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · 1 ) ) ) |
| 75 | 74 | adantl | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑁 = 0 ) → ( ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) ↔ ( ( 0 ↑ 𝐾 ) · ( 𝑀 ↑ 0 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · 1 ) ) ) |
| 76 | 66 75 | mpbird | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑁 = 0 ) → ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) ) |