This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | faclbnd3 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑁 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) | |
| 2 | nnre | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 4 | nnge1 | ⊢ ( 𝑀 ∈ ℕ → 1 ≤ 𝑀 ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 1 ≤ 𝑀 ) |
| 6 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 8 | uzid | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 9 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 10 | 7 8 9 | 3syl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 11 | 3 5 10 | leexp2ad | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑁 ) ≤ ( 𝑀 ↑ ( 𝑁 + 1 ) ) ) |
| 12 | nnnn0 | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) | |
| 13 | faclbnd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) | |
| 14 | 12 13 | sylan | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 15 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 16 | reexpcl | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑁 ) ∈ ℝ ) | |
| 17 | 15 16 | sylan | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑁 ) ∈ ℝ ) |
| 18 | peano2nn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) | |
| 19 | reexpcl | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑁 + 1 ) ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ∈ ℝ ) | |
| 20 | 15 18 19 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ∈ ℝ ) |
| 21 | reexpcl | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑀 ) ∈ ℝ ) | |
| 22 | 15 21 | mpancom | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ↑ 𝑀 ) ∈ ℝ ) |
| 23 | faccl | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) | |
| 24 | 23 | nnred | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℝ ) |
| 25 | remulcl | ⊢ ( ( ( 𝑀 ↑ 𝑀 ) ∈ ℝ ∧ ( ! ‘ 𝑁 ) ∈ ℝ ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ∈ ℝ ) | |
| 26 | 22 24 25 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ∈ ℝ ) |
| 27 | letr | ⊢ ( ( ( 𝑀 ↑ 𝑁 ) ∈ ℝ ∧ ( 𝑀 ↑ ( 𝑁 + 1 ) ) ∈ ℝ ∧ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ∈ ℝ ) → ( ( ( 𝑀 ↑ 𝑁 ) ≤ ( 𝑀 ↑ ( 𝑁 + 1 ) ) ∧ ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) → ( 𝑀 ↑ 𝑁 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) | |
| 28 | 17 20 26 27 | syl3anc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑀 ↑ 𝑁 ) ≤ ( 𝑀 ↑ ( 𝑁 + 1 ) ) ∧ ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) → ( 𝑀 ↑ 𝑁 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 29 | 12 28 | sylan | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑀 ↑ 𝑁 ) ≤ ( 𝑀 ↑ ( 𝑁 + 1 ) ) ∧ ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) → ( 𝑀 ↑ 𝑁 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 30 | 11 14 29 | mp2and | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑁 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 31 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 32 | 0exp | ⊢ ( 𝑁 ∈ ℕ → ( 0 ↑ 𝑁 ) = 0 ) | |
| 33 | 0le1 | ⊢ 0 ≤ 1 | |
| 34 | 32 33 | eqbrtrdi | ⊢ ( 𝑁 ∈ ℕ → ( 0 ↑ 𝑁 ) ≤ 1 ) |
| 35 | oveq2 | ⊢ ( 𝑁 = 0 → ( 0 ↑ 𝑁 ) = ( 0 ↑ 0 ) ) | |
| 36 | 0exp0e1 | ⊢ ( 0 ↑ 0 ) = 1 | |
| 37 | 1le1 | ⊢ 1 ≤ 1 | |
| 38 | 36 37 | eqbrtri | ⊢ ( 0 ↑ 0 ) ≤ 1 |
| 39 | 35 38 | eqbrtrdi | ⊢ ( 𝑁 = 0 → ( 0 ↑ 𝑁 ) ≤ 1 ) |
| 40 | 34 39 | jaoi | ⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 0 ↑ 𝑁 ) ≤ 1 ) |
| 41 | 31 40 | sylbi | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 ↑ 𝑁 ) ≤ 1 ) |
| 42 | 1nn | ⊢ 1 ∈ ℕ | |
| 43 | nnmulcl | ⊢ ( ( 1 ∈ ℕ ∧ ( ! ‘ 𝑁 ) ∈ ℕ ) → ( 1 · ( ! ‘ 𝑁 ) ) ∈ ℕ ) | |
| 44 | 42 23 43 | sylancr | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 · ( ! ‘ 𝑁 ) ) ∈ ℕ ) |
| 45 | 44 | nnge1d | ⊢ ( 𝑁 ∈ ℕ0 → 1 ≤ ( 1 · ( ! ‘ 𝑁 ) ) ) |
| 46 | 0re | ⊢ 0 ∈ ℝ | |
| 47 | reexpcl | ⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 0 ↑ 𝑁 ) ∈ ℝ ) | |
| 48 | 46 47 | mpan | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 ↑ 𝑁 ) ∈ ℝ ) |
| 49 | 1re | ⊢ 1 ∈ ℝ | |
| 50 | remulcl | ⊢ ( ( 1 ∈ ℝ ∧ ( ! ‘ 𝑁 ) ∈ ℝ ) → ( 1 · ( ! ‘ 𝑁 ) ) ∈ ℝ ) | |
| 51 | 49 24 50 | sylancr | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 · ( ! ‘ 𝑁 ) ) ∈ ℝ ) |
| 52 | letr | ⊢ ( ( ( 0 ↑ 𝑁 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 1 · ( ! ‘ 𝑁 ) ) ∈ ℝ ) → ( ( ( 0 ↑ 𝑁 ) ≤ 1 ∧ 1 ≤ ( 1 · ( ! ‘ 𝑁 ) ) ) → ( 0 ↑ 𝑁 ) ≤ ( 1 · ( ! ‘ 𝑁 ) ) ) ) | |
| 53 | 49 52 | mp3an2 | ⊢ ( ( ( 0 ↑ 𝑁 ) ∈ ℝ ∧ ( 1 · ( ! ‘ 𝑁 ) ) ∈ ℝ ) → ( ( ( 0 ↑ 𝑁 ) ≤ 1 ∧ 1 ≤ ( 1 · ( ! ‘ 𝑁 ) ) ) → ( 0 ↑ 𝑁 ) ≤ ( 1 · ( ! ‘ 𝑁 ) ) ) ) |
| 54 | 48 51 53 | syl2anc | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 0 ↑ 𝑁 ) ≤ 1 ∧ 1 ≤ ( 1 · ( ! ‘ 𝑁 ) ) ) → ( 0 ↑ 𝑁 ) ≤ ( 1 · ( ! ‘ 𝑁 ) ) ) ) |
| 55 | 41 45 54 | mp2and | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 ↑ 𝑁 ) ≤ ( 1 · ( ! ‘ 𝑁 ) ) ) |
| 56 | 55 | adantl | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 ↑ 𝑁 ) ≤ ( 1 · ( ! ‘ 𝑁 ) ) ) |
| 57 | oveq1 | ⊢ ( 𝑀 = 0 → ( 𝑀 ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ) | |
| 58 | oveq12 | ⊢ ( ( 𝑀 = 0 ∧ 𝑀 = 0 ) → ( 𝑀 ↑ 𝑀 ) = ( 0 ↑ 0 ) ) | |
| 59 | 58 | anidms | ⊢ ( 𝑀 = 0 → ( 𝑀 ↑ 𝑀 ) = ( 0 ↑ 0 ) ) |
| 60 | 59 36 | eqtrdi | ⊢ ( 𝑀 = 0 → ( 𝑀 ↑ 𝑀 ) = 1 ) |
| 61 | 60 | oveq1d | ⊢ ( 𝑀 = 0 → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) = ( 1 · ( ! ‘ 𝑁 ) ) ) |
| 62 | 57 61 | breq12d | ⊢ ( 𝑀 = 0 → ( ( 𝑀 ↑ 𝑁 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ↔ ( 0 ↑ 𝑁 ) ≤ ( 1 · ( ! ‘ 𝑁 ) ) ) ) |
| 63 | 62 | adantr | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 ↑ 𝑁 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ↔ ( 0 ↑ 𝑁 ) ≤ ( 1 · ( ! ‘ 𝑁 ) ) ) ) |
| 64 | 56 63 | mpbird | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑁 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 65 | 30 64 | jaoian | ⊢ ( ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑁 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 66 | 1 65 | sylanb | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑁 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |