This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for faclbnd4 . The N = 0 case. (Contributed by NM, 23-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | faclbnd4lem3 | |- ( ( ( M e. NN0 /\ K e. NN0 ) /\ N = 0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( K e. NN0 <-> ( K e. NN \/ K = 0 ) ) |
|
| 2 | 0exp | |- ( K e. NN -> ( 0 ^ K ) = 0 ) |
|
| 3 | 2 | adantl | |- ( ( M e. NN0 /\ K e. NN ) -> ( 0 ^ K ) = 0 ) |
| 4 | nnnn0 | |- ( K e. NN -> K e. NN0 ) |
|
| 5 | 2nn0 | |- 2 e. NN0 |
|
| 6 | nn0sqcl | |- ( K e. NN0 -> ( K ^ 2 ) e. NN0 ) |
|
| 7 | nn0expcl | |- ( ( 2 e. NN0 /\ ( K ^ 2 ) e. NN0 ) -> ( 2 ^ ( K ^ 2 ) ) e. NN0 ) |
|
| 8 | 5 6 7 | sylancr | |- ( K e. NN0 -> ( 2 ^ ( K ^ 2 ) ) e. NN0 ) |
| 9 | 8 | adantl | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( 2 ^ ( K ^ 2 ) ) e. NN0 ) |
| 10 | nn0addcl | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( M + K ) e. NN0 ) |
|
| 11 | nn0expcl | |- ( ( M e. NN0 /\ ( M + K ) e. NN0 ) -> ( M ^ ( M + K ) ) e. NN0 ) |
|
| 12 | 10 11 | syldan | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( M ^ ( M + K ) ) e. NN0 ) |
| 13 | 9 12 | nn0mulcld | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) e. NN0 ) |
| 14 | 4 13 | sylan2 | |- ( ( M e. NN0 /\ K e. NN ) -> ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) e. NN0 ) |
| 15 | 14 | nn0ge0d | |- ( ( M e. NN0 /\ K e. NN ) -> 0 <_ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) |
| 16 | 3 15 | eqbrtrd | |- ( ( M e. NN0 /\ K e. NN ) -> ( 0 ^ K ) <_ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) |
| 17 | 1nn | |- 1 e. NN |
|
| 18 | elnn0 | |- ( M e. NN0 <-> ( M e. NN \/ M = 0 ) ) |
|
| 19 | nnnn0 | |- ( M e. NN -> M e. NN0 ) |
|
| 20 | 0nn0 | |- 0 e. NN0 |
|
| 21 | nn0addcl | |- ( ( M e. NN0 /\ 0 e. NN0 ) -> ( M + 0 ) e. NN0 ) |
|
| 22 | 19 20 21 | sylancl | |- ( M e. NN -> ( M + 0 ) e. NN0 ) |
| 23 | nnexpcl | |- ( ( M e. NN /\ ( M + 0 ) e. NN0 ) -> ( M ^ ( M + 0 ) ) e. NN ) |
|
| 24 | 22 23 | mpdan | |- ( M e. NN -> ( M ^ ( M + 0 ) ) e. NN ) |
| 25 | id | |- ( M = 0 -> M = 0 ) |
|
| 26 | oveq1 | |- ( M = 0 -> ( M + 0 ) = ( 0 + 0 ) ) |
|
| 27 | 00id | |- ( 0 + 0 ) = 0 |
|
| 28 | 26 27 | eqtrdi | |- ( M = 0 -> ( M + 0 ) = 0 ) |
| 29 | 25 28 | oveq12d | |- ( M = 0 -> ( M ^ ( M + 0 ) ) = ( 0 ^ 0 ) ) |
| 30 | 0exp0e1 | |- ( 0 ^ 0 ) = 1 |
|
| 31 | 29 30 | eqtrdi | |- ( M = 0 -> ( M ^ ( M + 0 ) ) = 1 ) |
| 32 | 31 17 | eqeltrdi | |- ( M = 0 -> ( M ^ ( M + 0 ) ) e. NN ) |
| 33 | 24 32 | jaoi | |- ( ( M e. NN \/ M = 0 ) -> ( M ^ ( M + 0 ) ) e. NN ) |
| 34 | 18 33 | sylbi | |- ( M e. NN0 -> ( M ^ ( M + 0 ) ) e. NN ) |
| 35 | nnmulcl | |- ( ( 1 e. NN /\ ( M ^ ( M + 0 ) ) e. NN ) -> ( 1 x. ( M ^ ( M + 0 ) ) ) e. NN ) |
|
| 36 | 17 34 35 | sylancr | |- ( M e. NN0 -> ( 1 x. ( M ^ ( M + 0 ) ) ) e. NN ) |
| 37 | 36 | nnge1d | |- ( M e. NN0 -> 1 <_ ( 1 x. ( M ^ ( M + 0 ) ) ) ) |
| 38 | 37 | adantr | |- ( ( M e. NN0 /\ K = 0 ) -> 1 <_ ( 1 x. ( M ^ ( M + 0 ) ) ) ) |
| 39 | oveq2 | |- ( K = 0 -> ( 0 ^ K ) = ( 0 ^ 0 ) ) |
|
| 40 | 39 30 | eqtrdi | |- ( K = 0 -> ( 0 ^ K ) = 1 ) |
| 41 | sq0i | |- ( K = 0 -> ( K ^ 2 ) = 0 ) |
|
| 42 | 41 | oveq2d | |- ( K = 0 -> ( 2 ^ ( K ^ 2 ) ) = ( 2 ^ 0 ) ) |
| 43 | 2cn | |- 2 e. CC |
|
| 44 | exp0 | |- ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) |
|
| 45 | 43 44 | ax-mp | |- ( 2 ^ 0 ) = 1 |
| 46 | 42 45 | eqtrdi | |- ( K = 0 -> ( 2 ^ ( K ^ 2 ) ) = 1 ) |
| 47 | oveq2 | |- ( K = 0 -> ( M + K ) = ( M + 0 ) ) |
|
| 48 | 47 | oveq2d | |- ( K = 0 -> ( M ^ ( M + K ) ) = ( M ^ ( M + 0 ) ) ) |
| 49 | 46 48 | oveq12d | |- ( K = 0 -> ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) = ( 1 x. ( M ^ ( M + 0 ) ) ) ) |
| 50 | 40 49 | breq12d | |- ( K = 0 -> ( ( 0 ^ K ) <_ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) <-> 1 <_ ( 1 x. ( M ^ ( M + 0 ) ) ) ) ) |
| 51 | 50 | adantl | |- ( ( M e. NN0 /\ K = 0 ) -> ( ( 0 ^ K ) <_ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) <-> 1 <_ ( 1 x. ( M ^ ( M + 0 ) ) ) ) ) |
| 52 | 38 51 | mpbird | |- ( ( M e. NN0 /\ K = 0 ) -> ( 0 ^ K ) <_ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) |
| 53 | 16 52 | jaodan | |- ( ( M e. NN0 /\ ( K e. NN \/ K = 0 ) ) -> ( 0 ^ K ) <_ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) |
| 54 | 1 53 | sylan2b | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( 0 ^ K ) <_ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) |
| 55 | nn0cn | |- ( M e. NN0 -> M e. CC ) |
|
| 56 | 55 | exp0d | |- ( M e. NN0 -> ( M ^ 0 ) = 1 ) |
| 57 | 56 | oveq2d | |- ( M e. NN0 -> ( ( 0 ^ K ) x. ( M ^ 0 ) ) = ( ( 0 ^ K ) x. 1 ) ) |
| 58 | nn0expcl | |- ( ( 0 e. NN0 /\ K e. NN0 ) -> ( 0 ^ K ) e. NN0 ) |
|
| 59 | 20 58 | mpan | |- ( K e. NN0 -> ( 0 ^ K ) e. NN0 ) |
| 60 | 59 | nn0cnd | |- ( K e. NN0 -> ( 0 ^ K ) e. CC ) |
| 61 | 60 | mulridd | |- ( K e. NN0 -> ( ( 0 ^ K ) x. 1 ) = ( 0 ^ K ) ) |
| 62 | 57 61 | sylan9eq | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( ( 0 ^ K ) x. ( M ^ 0 ) ) = ( 0 ^ K ) ) |
| 63 | 13 | nn0cnd | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) e. CC ) |
| 64 | 63 | mulridd | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. 1 ) = ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) |
| 65 | 54 62 64 | 3brtr4d | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( ( 0 ^ K ) x. ( M ^ 0 ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. 1 ) ) |
| 66 | 65 | adantr | |- ( ( ( M e. NN0 /\ K e. NN0 ) /\ N = 0 ) -> ( ( 0 ^ K ) x. ( M ^ 0 ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. 1 ) ) |
| 67 | oveq1 | |- ( N = 0 -> ( N ^ K ) = ( 0 ^ K ) ) |
|
| 68 | oveq2 | |- ( N = 0 -> ( M ^ N ) = ( M ^ 0 ) ) |
|
| 69 | 67 68 | oveq12d | |- ( N = 0 -> ( ( N ^ K ) x. ( M ^ N ) ) = ( ( 0 ^ K ) x. ( M ^ 0 ) ) ) |
| 70 | fveq2 | |- ( N = 0 -> ( ! ` N ) = ( ! ` 0 ) ) |
|
| 71 | fac0 | |- ( ! ` 0 ) = 1 |
|
| 72 | 70 71 | eqtrdi | |- ( N = 0 -> ( ! ` N ) = 1 ) |
| 73 | 72 | oveq2d | |- ( N = 0 -> ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) = ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. 1 ) ) |
| 74 | 69 73 | breq12d | |- ( N = 0 -> ( ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) <-> ( ( 0 ^ K ) x. ( M ^ 0 ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. 1 ) ) ) |
| 75 | 74 | adantl | |- ( ( ( M e. NN0 /\ K e. NN0 ) /\ N = 0 ) -> ( ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) <-> ( ( 0 ^ K ) x. ( M ^ 0 ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. 1 ) ) ) |
| 76 | 66 75 | mpbird | |- ( ( ( M e. NN0 /\ K e. NN0 ) /\ N = 0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |