This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | faclbnd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) | |
| 2 | oveq1 | ⊢ ( 𝑗 = 0 → ( 𝑗 + 1 ) = ( 0 + 1 ) ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝑗 = 0 → ( 𝑀 ↑ ( 𝑗 + 1 ) ) = ( 𝑀 ↑ ( 0 + 1 ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑗 = 0 → ( ! ‘ 𝑗 ) = ( ! ‘ 0 ) ) | |
| 5 | 4 | oveq2d | ⊢ ( 𝑗 = 0 → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) ) |
| 6 | 3 5 | breq12d | ⊢ ( 𝑗 = 0 → ( ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ↔ ( 𝑀 ↑ ( 0 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) ) ) |
| 7 | 6 | imbi2d | ⊢ ( 𝑗 = 0 → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 0 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) ) ) ) |
| 8 | oveq1 | ⊢ ( 𝑗 = 𝑘 → ( 𝑗 + 1 ) = ( 𝑘 + 1 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝑀 ↑ ( 𝑗 + 1 ) ) = ( 𝑀 ↑ ( 𝑘 + 1 ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑘 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) |
| 12 | 9 11 | breq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ↔ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ) ) |
| 14 | oveq1 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 + 1 ) = ( ( 𝑘 + 1 ) + 1 ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑀 ↑ ( 𝑗 + 1 ) ) = ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ! ‘ 𝑗 ) = ( ! ‘ ( 𝑘 + 1 ) ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 18 | 15 17 | breq12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ↔ ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 20 | oveq1 | ⊢ ( 𝑗 = 𝑁 → ( 𝑗 + 1 ) = ( 𝑁 + 1 ) ) | |
| 21 | 20 | oveq2d | ⊢ ( 𝑗 = 𝑁 → ( 𝑀 ↑ ( 𝑗 + 1 ) ) = ( 𝑀 ↑ ( 𝑁 + 1 ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑗 = 𝑁 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑁 ) ) | |
| 23 | 22 | oveq2d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 24 | 21 23 | breq12d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ↔ ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 25 | 24 | imbi2d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑗 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑗 ) ) ) ↔ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) ) |
| 26 | nnre | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) | |
| 27 | nnge1 | ⊢ ( 𝑀 ∈ ℕ → 1 ≤ 𝑀 ) | |
| 28 | elnnuz | ⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 29 | 28 | biimpi | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 30 | 26 27 29 | leexp2ad | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 1 ) ≤ ( 𝑀 ↑ 𝑀 ) ) |
| 31 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 32 | 31 | oveq2i | ⊢ ( 𝑀 ↑ ( 0 + 1 ) ) = ( 𝑀 ↑ 1 ) |
| 33 | 32 | a1i | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 0 + 1 ) ) = ( 𝑀 ↑ 1 ) ) |
| 34 | fac0 | ⊢ ( ! ‘ 0 ) = 1 | |
| 35 | 34 | oveq2i | ⊢ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) = ( ( 𝑀 ↑ 𝑀 ) · 1 ) |
| 36 | nnnn0 | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) | |
| 37 | 26 36 | reexpcld | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 𝑀 ) ∈ ℝ ) |
| 38 | 37 | recnd | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 𝑀 ) ∈ ℂ ) |
| 39 | 38 | mulridd | ⊢ ( 𝑀 ∈ ℕ → ( ( 𝑀 ↑ 𝑀 ) · 1 ) = ( 𝑀 ↑ 𝑀 ) ) |
| 40 | 35 39 | eqtrid | ⊢ ( 𝑀 ∈ ℕ → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) = ( 𝑀 ↑ 𝑀 ) ) |
| 41 | 30 33 40 | 3brtr4d | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 0 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 0 ) ) ) |
| 42 | 26 | ad3antrrr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 43 | simpllr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) | |
| 44 | peano2nn0 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) | |
| 45 | 43 44 | syl | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 46 | 42 45 | reexpcld | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 47 | 36 | ad3antrrr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 𝑀 ∈ ℕ0 ) |
| 48 | 42 47 | reexpcld | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ 𝑀 ) ∈ ℝ ) |
| 49 | 43 | faccld | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 50 | 49 | nnred | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
| 51 | 48 50 | remulcld | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 52 | nn0re | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) | |
| 53 | peano2re | ⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) | |
| 54 | 43 52 53 | 3syl | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 55 | nngt0 | ⊢ ( 𝑀 ∈ ℕ → 0 < 𝑀 ) | |
| 56 | 55 | ad3antrrr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 0 < 𝑀 ) |
| 57 | 0re | ⊢ 0 ∈ ℝ | |
| 58 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 0 < 𝑀 → 0 ≤ 𝑀 ) ) | |
| 59 | 57 58 | mpan | ⊢ ( 𝑀 ∈ ℝ → ( 0 < 𝑀 → 0 ≤ 𝑀 ) ) |
| 60 | 42 56 59 | sylc | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 0 ≤ 𝑀 ) |
| 61 | 42 45 60 | expge0d | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 0 ≤ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ) |
| 62 | simplr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) | |
| 63 | simprr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → 𝑀 ≤ ( 𝑘 + 1 ) ) | |
| 64 | 46 51 42 54 61 60 62 63 | lemul12ad | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) ∧ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ≤ ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) ) |
| 65 | 64 | anandis | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ≤ ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) ) |
| 66 | nncn | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) | |
| 67 | expp1 | ⊢ ( ( 𝑀 ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) = ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ) | |
| 68 | 66 44 67 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) = ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ) |
| 69 | 68 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) = ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) · 𝑀 ) ) |
| 70 | facp1 | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) | |
| 71 | 70 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 72 | 71 | oveq2d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
| 73 | 38 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑀 ) ∈ ℂ ) |
| 74 | faccl | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) | |
| 75 | 74 | nncnd | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 76 | 75 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 77 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 78 | peano2cn | ⊢ ( 𝑘 ∈ ℂ → ( 𝑘 + 1 ) ∈ ℂ ) | |
| 79 | 77 78 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℂ ) |
| 80 | 79 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 81 | 73 76 80 | mulassd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) = ( ( 𝑀 ↑ 𝑀 ) · ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
| 82 | 72 81 | eqtr4d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) = ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) ) |
| 83 | 82 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) = ( ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) · ( 𝑘 + 1 ) ) ) |
| 84 | 65 69 83 | 3brtr4d | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 85 | 84 | exp32 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ≤ ( 𝑘 + 1 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 86 | 85 | com23 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ≤ ( 𝑘 + 1 ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 87 | nn0ltp1le | ⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) < 𝑀 ↔ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) ) | |
| 88 | 44 36 87 | syl2anr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) < 𝑀 ↔ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) ) |
| 89 | peano2nn0 | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ0 → ( ( 𝑘 + 1 ) + 1 ) ∈ ℕ0 ) | |
| 90 | 44 89 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑘 + 1 ) + 1 ) ∈ ℕ0 ) |
| 91 | reexpcl | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( 𝑘 + 1 ) + 1 ) ∈ ℕ0 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ∈ ℝ ) | |
| 92 | 26 90 91 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ∈ ℝ ) |
| 93 | 92 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ∈ ℝ ) |
| 94 | 37 | ad2antrr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ 𝑀 ) ∈ ℝ ) |
| 95 | 44 | faccld | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 96 | 95 | nnred | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 97 | remulcl | ⊢ ( ( ( 𝑀 ↑ 𝑀 ) ∈ ℝ ∧ ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) | |
| 98 | 37 96 97 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 99 | 98 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 100 | 26 | ad2antrr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 101 | 27 | ad2antrr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → 1 ≤ 𝑀 ) |
| 102 | simpr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) | |
| 103 | 90 | ad2antlr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( ( 𝑘 + 1 ) + 1 ) ∈ ℕ0 ) |
| 104 | 103 | nn0zd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( ( 𝑘 + 1 ) + 1 ) ∈ ℤ ) |
| 105 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 106 | 105 | ad2antrr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 107 | eluz | ⊢ ( ( ( ( 𝑘 + 1 ) + 1 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝑘 + 1 ) + 1 ) ) ↔ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) ) | |
| 108 | 104 106 107 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝑘 + 1 ) + 1 ) ) ↔ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) ) |
| 109 | 102 108 | mpbird | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝑘 + 1 ) + 1 ) ) ) |
| 110 | 100 101 109 | leexp2ad | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( 𝑀 ↑ 𝑀 ) ) |
| 111 | 37 96 | anim12i | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ 𝑀 ) ∈ ℝ ∧ ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) ) |
| 112 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 113 | id | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℕ0 ) | |
| 114 | nn0ge0 | ⊢ ( 𝑀 ∈ ℕ0 → 0 ≤ 𝑀 ) | |
| 115 | 112 113 114 | expge0d | ⊢ ( 𝑀 ∈ ℕ0 → 0 ≤ ( 𝑀 ↑ 𝑀 ) ) |
| 116 | 36 115 | syl | ⊢ ( 𝑀 ∈ ℕ → 0 ≤ ( 𝑀 ↑ 𝑀 ) ) |
| 117 | 95 | nnge1d | ⊢ ( 𝑘 ∈ ℕ0 → 1 ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) |
| 118 | 116 117 | anim12i | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 0 ≤ ( 𝑀 ↑ 𝑀 ) ∧ 1 ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 119 | lemulge11 | ⊢ ( ( ( ( 𝑀 ↑ 𝑀 ) ∈ ℝ ∧ ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) ∧ ( 0 ≤ ( 𝑀 ↑ 𝑀 ) ∧ 1 ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝑀 ↑ 𝑀 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) | |
| 120 | 111 118 119 | syl2anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ↑ 𝑀 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 121 | 120 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ 𝑀 ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 122 | 93 94 99 110 121 | letrd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 123 | 122 | ex | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑘 + 1 ) + 1 ) ≤ 𝑀 → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 124 | 88 123 | sylbid | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) < 𝑀 → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 125 | 124 | a1dd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) < 𝑀 → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 126 | 52 53 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℝ ) |
| 127 | lelttric | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) → ( 𝑀 ≤ ( 𝑘 + 1 ) ∨ ( 𝑘 + 1 ) < 𝑀 ) ) | |
| 128 | 26 126 127 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ≤ ( 𝑘 + 1 ) ∨ ( 𝑘 + 1 ) < 𝑀 ) ) |
| 129 | 86 125 128 | mpjaod | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 130 | 129 | expcom | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑀 ∈ ℕ → ( ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 131 | 130 | a2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑘 ) ) ) → ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 132 | 7 13 19 25 41 131 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 133 | 132 | impcom | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 134 | faccl | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) | |
| 135 | 134 | nnnn0d | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ0 ) |
| 136 | 135 | nn0ge0d | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ ( ! ‘ 𝑁 ) ) |
| 137 | nn0p1nn | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) | |
| 138 | 137 | 0expd | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 ↑ ( 𝑁 + 1 ) ) = 0 ) |
| 139 | 0exp0e1 | ⊢ ( 0 ↑ 0 ) = 1 | |
| 140 | 139 | oveq1i | ⊢ ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) = ( 1 · ( ! ‘ 𝑁 ) ) |
| 141 | 134 | nncnd | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 142 | 141 | mullidd | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 · ( ! ‘ 𝑁 ) ) = ( ! ‘ 𝑁 ) ) |
| 143 | 140 142 | eqtrid | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) = ( ! ‘ 𝑁 ) ) |
| 144 | 136 138 143 | 3brtr4d | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) ) |
| 145 | oveq1 | ⊢ ( 𝑀 = 0 → ( 𝑀 ↑ ( 𝑁 + 1 ) ) = ( 0 ↑ ( 𝑁 + 1 ) ) ) | |
| 146 | oveq12 | ⊢ ( ( 𝑀 = 0 ∧ 𝑀 = 0 ) → ( 𝑀 ↑ 𝑀 ) = ( 0 ↑ 0 ) ) | |
| 147 | 146 | anidms | ⊢ ( 𝑀 = 0 → ( 𝑀 ↑ 𝑀 ) = ( 0 ↑ 0 ) ) |
| 148 | 147 | oveq1d | ⊢ ( 𝑀 = 0 → ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) = ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) ) |
| 149 | 145 148 | breq12d | ⊢ ( 𝑀 = 0 → ( ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ↔ ( 0 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 0 ↑ 0 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 150 | 144 149 | imbitrrid | ⊢ ( 𝑀 = 0 → ( 𝑁 ∈ ℕ0 → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 151 | 150 | imp | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 152 | 133 151 | jaoian | ⊢ ( ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 153 | 1 152 | sylanb | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 𝑀 ↑ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |