This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by a number greater than or equal to 1. (Contributed by NM, 17-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lemulge11 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → 𝐴 ≤ ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1rid | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) | |
| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 3 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) | |
| 4 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → 0 ≤ 𝐴 ) | |
| 5 | 3 4 | jca | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 6 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) | |
| 7 | 1re | ⊢ 1 ∈ ℝ | |
| 8 | 0le1 | ⊢ 0 ≤ 1 | |
| 9 | 7 8 | pm3.2i | ⊢ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) |
| 10 | 6 9 | jctil | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ 𝐵 ∈ ℝ ) ) |
| 11 | 5 3 10 | jca31 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐴 ∈ ℝ ) ∧ ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ 𝐵 ∈ ℝ ) ) ) |
| 12 | leid | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ 𝐴 ) | |
| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → 𝐴 ≤ 𝐴 ) |
| 14 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → 1 ≤ 𝐵 ) | |
| 15 | 13 14 | jca | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) |
| 16 | lemul12a | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐴 ∈ ℝ ) ∧ ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ 𝐵 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) → ( 𝐴 · 1 ) ≤ ( 𝐴 · 𝐵 ) ) ) | |
| 17 | 11 15 16 | sylc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → ( 𝐴 · 1 ) ≤ ( 𝐴 · 𝐵 ) ) |
| 18 | 2 17 | eqbrtrrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 1 ≤ 𝐵 ) ) → 𝐴 ≤ ( 𝐴 · 𝐵 ) ) |