This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008) (Proof shortened by Wolf Lammen, 19-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqrdav.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐶 ) | |
| eqrdav.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐶 ) | ||
| eqrdav.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | ||
| Assertion | eqrdav | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdav.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐶 ) | |
| 2 | eqrdav.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐶 ) | |
| 3 | eqrdav.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 4 | 3 | biimpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 5 | 4 | impancom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) |
| 6 | 1 5 | mpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 7 | 3 | biimprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴 ) ) |
| 8 | 7 | impancom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) ) |
| 9 | 2 8 | mpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 10 | 6 9 | impbida | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 11 | 10 | eqrdv | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |