This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a bijection F , produce another bijection G which additionally maps two specified points. (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fveqf1o.1 | ⊢ 𝐺 = ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) | |
| Assertion | fveqf1o | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 ‘ 𝐶 ) = 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqf1o.1 | ⊢ 𝐺 = ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) | |
| 2 | simp1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 3 | f1oi | ⊢ ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) : ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) –1-1-onto→ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) | |
| 4 | 3 | a1i | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) : ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) –1-1-onto→ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) |
| 5 | simp2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → 𝐶 ∈ 𝐴 ) | |
| 6 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 7 | f1of | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) | |
| 8 | 2 6 7 | 3syl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 9 | simp3 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → 𝐷 ∈ 𝐵 ) | |
| 10 | 8 9 | ffvelcdmd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝐷 ) ∈ 𝐴 ) |
| 11 | f1oprswap | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ◡ 𝐹 ‘ 𝐷 ) ∈ 𝐴 ) → { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } : { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } –1-1-onto→ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) | |
| 12 | 5 10 11 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } : { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } –1-1-onto→ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) |
| 13 | disjdifr | ⊢ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∩ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) = ∅ | |
| 14 | 13 | a1i | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∩ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) = ∅ ) |
| 15 | f1oun | ⊢ ( ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) : ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) –1-1-onto→ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∧ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } : { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } –1-1-onto→ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∧ ( ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∩ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) = ∅ ∧ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∩ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) = ∅ ) ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) | |
| 16 | 4 12 14 14 15 | syl22anc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) |
| 17 | uncom | ⊢ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) = ( { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ∪ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) | |
| 18 | 5 10 | prssd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ⊆ 𝐴 ) |
| 19 | undif | ⊢ ( { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ⊆ 𝐴 ↔ ( { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ∪ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) = 𝐴 ) | |
| 20 | 18 19 | sylib | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ∪ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) = 𝐴 ) |
| 21 | 17 20 | eqtrid | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) = 𝐴 ) |
| 22 | 21 | f1oeq2d | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ↔ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ) |
| 23 | 16 22 | mpbid | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) |
| 24 | 21 | f1oeq3d | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ↔ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 25 | 23 24 | mpbid | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 –1-1-onto→ 𝐴 ) |
| 26 | f1oco | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 –1-1-onto→ 𝐴 ) → ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) : 𝐴 –1-1-onto→ 𝐵 ) | |
| 27 | 2 25 26 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) : 𝐴 –1-1-onto→ 𝐵 ) |
| 28 | f1oeq1 | ⊢ ( 𝐺 = ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) → ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) : 𝐴 –1-1-onto→ 𝐵 ) ) | |
| 29 | 1 28 | ax-mp | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) : 𝐴 –1-1-onto→ 𝐵 ) |
| 30 | 27 29 | sylibr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → 𝐺 : 𝐴 –1-1-onto→ 𝐵 ) |
| 31 | 1 | fveq1i | ⊢ ( 𝐺 ‘ 𝐶 ) = ( ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) ‘ 𝐶 ) |
| 32 | f1of | ⊢ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 –1-1-onto→ 𝐴 → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 ⟶ 𝐴 ) | |
| 33 | 25 32 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 ⟶ 𝐴 ) |
| 34 | fvco3 | ⊢ ( ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 ⟶ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) ‘ 𝐶 ) = ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) ) ) | |
| 35 | 33 5 34 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) ‘ 𝐶 ) = ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) ) ) |
| 36 | 31 35 | eqtrid | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐺 ‘ 𝐶 ) = ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) ) ) |
| 37 | fnresi | ⊢ ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) Fn ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) | |
| 38 | 37 | a1i | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) Fn ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) |
| 39 | f1ofn | ⊢ ( { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } : { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } –1-1-onto→ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } → { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } Fn { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) | |
| 40 | 12 39 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } Fn { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) |
| 41 | prid1g | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) | |
| 42 | 5 41 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → 𝐶 ∈ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) |
| 43 | fvun2 | ⊢ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) Fn ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∧ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } Fn { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ∧ ( ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∩ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) = ∅ ∧ 𝐶 ∈ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) = ( { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ‘ 𝐶 ) ) | |
| 44 | 38 40 14 42 43 | syl112anc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) = ( { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ‘ 𝐶 ) ) |
| 45 | f1ofun | ⊢ ( { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } : { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } –1-1-onto→ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } → Fun { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) | |
| 46 | 12 45 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → Fun { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) |
| 47 | opex | ⊢ 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 ∈ V | |
| 48 | 47 | prid1 | ⊢ 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 ∈ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } |
| 49 | funopfv | ⊢ ( Fun { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } → ( 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 ∈ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } → ( { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ‘ 𝐶 ) = ( ◡ 𝐹 ‘ 𝐷 ) ) ) | |
| 50 | 46 48 49 | mpisyl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ‘ 𝐶 ) = ( ◡ 𝐹 ‘ 𝐷 ) ) |
| 51 | 44 50 | eqtrd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) = ( ◡ 𝐹 ‘ 𝐷 ) ) |
| 52 | 51 | fveq2d | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐷 ) ) ) |
| 53 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐷 ) ) = 𝐷 ) | |
| 54 | 2 9 53 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐷 ) ) = 𝐷 ) |
| 55 | 52 54 | eqtrd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) ) = 𝐷 ) |
| 56 | 36 55 | eqtrd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐺 ‘ 𝐶 ) = 𝐷 ) |
| 57 | 30 56 | jca | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 ‘ 𝐶 ) = 𝐷 ) ) |