This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnnval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 2 | expval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) = if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) ) |
| 4 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 5 | 4 | neneqd | ⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 ) |
| 6 | 5 | iffalsed | ⊢ ( 𝑁 ∈ ℕ → if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) = if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) |
| 7 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 8 | 7 | iftrued | ⊢ ( 𝑁 ∈ ℕ → if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |
| 9 | 6 8 | eqtrd | ⊢ ( 𝑁 ∈ ℕ → if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |
| 11 | 3 10 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |