This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a complex number raised to a nonpositive integer power. When A = 0 and N is nonzero, both sides have the "value" ( 1 / 0 ) ; relying on that should be avoid in applications. (Contributed by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expneg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 2 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝑁 ≠ 0 ) |
| 4 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 6 | 5 | negeq0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 = 0 ↔ - 𝑁 = 0 ) ) |
| 7 | 6 | necon3abid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ≠ 0 ↔ ¬ - 𝑁 = 0 ) ) |
| 8 | 3 7 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ¬ - 𝑁 = 0 ) |
| 9 | 8 | iffalsed | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → if ( - 𝑁 = 0 , 1 , if ( 0 < - 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) ) = if ( 0 < - 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) ) |
| 10 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
| 12 | nn0nlt0 | ⊢ ( 𝑁 ∈ ℕ0 → ¬ 𝑁 < 0 ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ¬ 𝑁 < 0 ) |
| 14 | 11 | nn0red | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 15 | 14 | lt0neg1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 < 0 ↔ 0 < - 𝑁 ) ) |
| 16 | 13 15 | mtbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ¬ 0 < - 𝑁 ) |
| 17 | 16 | iffalsed | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → if ( 0 < - 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) = ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) |
| 18 | 5 | negnegd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → - - 𝑁 = 𝑁 ) |
| 19 | 18 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |
| 20 | 19 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) = ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) ) |
| 21 | 9 17 20 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → if ( - 𝑁 = 0 , 1 , if ( 0 < - 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) ) = ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) ) |
| 22 | nnnegz | ⊢ ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) | |
| 23 | expval | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝑁 ∈ ℤ ) → ( 𝐴 ↑ - 𝑁 ) = if ( - 𝑁 = 0 , 1 , if ( 0 < - 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) ) ) | |
| 24 | 22 23 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ - 𝑁 ) = if ( - 𝑁 = 0 , 1 , if ( 0 < - 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - - 𝑁 ) ) ) ) ) |
| 25 | expnnval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) | |
| 26 | 25 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 1 / ( 𝐴 ↑ 𝑁 ) ) = ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) ) |
| 27 | 21 24 26 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |
| 28 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 29 | 28 | eqcomi | ⊢ 1 = ( 1 / 1 ) |
| 30 | negeq | ⊢ ( 𝑁 = 0 → - 𝑁 = - 0 ) | |
| 31 | neg0 | ⊢ - 0 = 0 | |
| 32 | 30 31 | eqtrdi | ⊢ ( 𝑁 = 0 → - 𝑁 = 0 ) |
| 33 | 32 | oveq2d | ⊢ ( 𝑁 = 0 → ( 𝐴 ↑ - 𝑁 ) = ( 𝐴 ↑ 0 ) ) |
| 34 | exp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) | |
| 35 | 33 34 | sylan9eqr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝐴 ↑ - 𝑁 ) = 1 ) |
| 36 | oveq2 | ⊢ ( 𝑁 = 0 → ( 𝐴 ↑ 𝑁 ) = ( 𝐴 ↑ 0 ) ) | |
| 37 | 36 34 | sylan9eqr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝐴 ↑ 𝑁 ) = 1 ) |
| 38 | 37 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 1 / ( 𝐴 ↑ 𝑁 ) ) = ( 1 / 1 ) ) |
| 39 | 29 35 38 | 3eqtr4a | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |
| 40 | 27 39 | jaodan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |
| 41 | 1 40 | sylan2b | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |