This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008) (Proof shortened by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnlbnd2 | |- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( 1 / ( B ^ k ) ) < A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expnlbnd | |- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> E. j e. NN ( 1 / ( B ^ j ) ) < A ) |
|
| 2 | simpl2 | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> B e. RR ) |
|
| 3 | simpl3 | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 1 < B ) |
|
| 4 | 1re | |- 1 e. RR |
|
| 5 | ltle | |- ( ( 1 e. RR /\ B e. RR ) -> ( 1 < B -> 1 <_ B ) ) |
|
| 6 | 4 2 5 | sylancr | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( 1 < B -> 1 <_ B ) ) |
| 7 | 3 6 | mpd | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 1 <_ B ) |
| 8 | simprr | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> k e. ( ZZ>= ` j ) ) |
|
| 9 | leexp2a | |- ( ( B e. RR /\ 1 <_ B /\ k e. ( ZZ>= ` j ) ) -> ( B ^ j ) <_ ( B ^ k ) ) |
|
| 10 | 2 7 8 9 | syl3anc | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( B ^ j ) <_ ( B ^ k ) ) |
| 11 | 0red | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 0 e. RR ) |
|
| 12 | 1red | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 1 e. RR ) |
|
| 13 | 0lt1 | |- 0 < 1 |
|
| 14 | 13 | a1i | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 0 < 1 ) |
| 15 | 11 12 2 14 3 | lttrd | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 0 < B ) |
| 16 | 2 15 | elrpd | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> B e. RR+ ) |
| 17 | nnz | |- ( j e. NN -> j e. ZZ ) |
|
| 18 | 17 | ad2antrl | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> j e. ZZ ) |
| 19 | rpexpcl | |- ( ( B e. RR+ /\ j e. ZZ ) -> ( B ^ j ) e. RR+ ) |
|
| 20 | 16 18 19 | syl2anc | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( B ^ j ) e. RR+ ) |
| 21 | eluzelz | |- ( k e. ( ZZ>= ` j ) -> k e. ZZ ) |
|
| 22 | 21 | ad2antll | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> k e. ZZ ) |
| 23 | rpexpcl | |- ( ( B e. RR+ /\ k e. ZZ ) -> ( B ^ k ) e. RR+ ) |
|
| 24 | 16 22 23 | syl2anc | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( B ^ k ) e. RR+ ) |
| 25 | 20 24 | lerecd | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( ( B ^ j ) <_ ( B ^ k ) <-> ( 1 / ( B ^ k ) ) <_ ( 1 / ( B ^ j ) ) ) ) |
| 26 | 10 25 | mpbid | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( 1 / ( B ^ k ) ) <_ ( 1 / ( B ^ j ) ) ) |
| 27 | 24 | rprecred | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( 1 / ( B ^ k ) ) e. RR ) |
| 28 | 20 | rprecred | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( 1 / ( B ^ j ) ) e. RR ) |
| 29 | simpl1 | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> A e. RR+ ) |
|
| 30 | 29 | rpred | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> A e. RR ) |
| 31 | lelttr | |- ( ( ( 1 / ( B ^ k ) ) e. RR /\ ( 1 / ( B ^ j ) ) e. RR /\ A e. RR ) -> ( ( ( 1 / ( B ^ k ) ) <_ ( 1 / ( B ^ j ) ) /\ ( 1 / ( B ^ j ) ) < A ) -> ( 1 / ( B ^ k ) ) < A ) ) |
|
| 32 | 27 28 30 31 | syl3anc | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( 1 / ( B ^ k ) ) <_ ( 1 / ( B ^ j ) ) /\ ( 1 / ( B ^ j ) ) < A ) -> ( 1 / ( B ^ k ) ) < A ) ) |
| 33 | 26 32 | mpand | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( ( 1 / ( B ^ j ) ) < A -> ( 1 / ( B ^ k ) ) < A ) ) |
| 34 | 33 | anassrs | |- ( ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( 1 / ( B ^ j ) ) < A -> ( 1 / ( B ^ k ) ) < A ) ) |
| 35 | 34 | ralrimdva | |- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ j e. NN ) -> ( ( 1 / ( B ^ j ) ) < A -> A. k e. ( ZZ>= ` j ) ( 1 / ( B ^ k ) ) < A ) ) |
| 36 | 35 | reximdva | |- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> ( E. j e. NN ( 1 / ( B ^ j ) ) < A -> E. j e. NN A. k e. ( ZZ>= ` j ) ( 1 / ( B ^ k ) ) < A ) ) |
| 37 | 1 36 | mpd | |- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( 1 / ( B ^ k ) ) < A ) |