This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for expclz . (Contributed by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expclzlem | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ( ℂ ∖ { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | ⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) | |
| 2 | difss | ⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ | |
| 3 | eldifsn | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) | |
| 4 | eldifsn | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) | |
| 5 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) | |
| 6 | 5 | ad2ant2r | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 7 | mulne0 | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) | |
| 8 | eldifsn | ⊢ ( ( 𝑥 · 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑥 · 𝑦 ) ∈ ℂ ∧ ( 𝑥 · 𝑦 ) ≠ 0 ) ) | |
| 9 | 6 7 8 | sylanbrc | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 10 | 3 4 9 | syl2anb | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 11 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 12 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 13 | eldifsn | ⊢ ( 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ) | |
| 14 | 11 12 13 | mpbir2an | ⊢ 1 ∈ ( ℂ ∖ { 0 } ) |
| 15 | reccl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℂ ) | |
| 16 | recne0 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ≠ 0 ) | |
| 17 | 15 16 | jca | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( ( 1 / 𝑥 ) ∈ ℂ ∧ ( 1 / 𝑥 ) ≠ 0 ) ) |
| 18 | eldifsn | ⊢ ( ( 1 / 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 1 / 𝑥 ) ∈ ℂ ∧ ( 1 / 𝑥 ) ≠ 0 ) ) | |
| 19 | 17 3 18 | 3imtr4i | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → ( 1 / 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 21 | 2 10 14 20 | expcl2lem | ⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 22 | 21 | 3expia | ⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐴 ≠ 0 ) → ( 𝑁 ∈ ℤ → ( 𝐴 ↑ 𝑁 ) ∈ ( ℂ ∖ { 0 } ) ) ) |
| 23 | 1 22 | sylanbr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐴 ≠ 0 ) → ( 𝑁 ∈ ℤ → ( 𝐴 ↑ 𝑁 ) ∈ ( ℂ ∖ { 0 } ) ) ) |
| 24 | 23 | anabss3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑁 ∈ ℤ → ( 𝐴 ↑ 𝑁 ) ∈ ( ℂ ∖ { 0 } ) ) ) |
| 25 | 24 | 3impia | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ( ℂ ∖ { 0 } ) ) |