This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcllem.1 | ⊢ 𝐹 ⊆ ℂ | |
| expcllem.2 | ⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 · 𝑦 ) ∈ 𝐹 ) | ||
| expcllem.3 | ⊢ 1 ∈ 𝐹 | ||
| Assertion | expcllem | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcllem.1 | ⊢ 𝐹 ⊆ ℂ | |
| 2 | expcllem.2 | ⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 · 𝑦 ) ∈ 𝐹 ) | |
| 3 | expcllem.3 | ⊢ 1 ∈ 𝐹 | |
| 4 | elnn0 | ⊢ ( 𝐵 ∈ ℕ0 ↔ ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) ) | |
| 5 | oveq2 | ⊢ ( 𝑧 = 1 → ( 𝐴 ↑ 𝑧 ) = ( 𝐴 ↑ 1 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑧 = 1 → ( ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ↔ ( 𝐴 ↑ 1 ) ∈ 𝐹 ) ) |
| 7 | 6 | imbi2d | ⊢ ( 𝑧 = 1 → ( ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ) ↔ ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 1 ) ∈ 𝐹 ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝐴 ↑ 𝑧 ) = ( 𝐴 ↑ 𝑤 ) ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ↔ ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ) ↔ ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑧 = ( 𝑤 + 1 ) → ( 𝐴 ↑ 𝑧 ) = ( 𝐴 ↑ ( 𝑤 + 1 ) ) ) | |
| 12 | 11 | eleq1d | ⊢ ( 𝑧 = ( 𝑤 + 1 ) → ( ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ↔ ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑧 = ( 𝑤 + 1 ) → ( ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ) ↔ ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝐴 ↑ 𝑧 ) = ( 𝐴 ↑ 𝐵 ) ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ↔ ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ) ↔ ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) ) |
| 17 | 1 | sseli | ⊢ ( 𝐴 ∈ 𝐹 → 𝐴 ∈ ℂ ) |
| 18 | exp1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) | |
| 19 | 17 18 | syl | ⊢ ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 1 ) = 𝐴 ) |
| 20 | 19 | eleq1d | ⊢ ( 𝐴 ∈ 𝐹 → ( ( 𝐴 ↑ 1 ) ∈ 𝐹 ↔ 𝐴 ∈ 𝐹 ) ) |
| 21 | 20 | ibir | ⊢ ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 1 ) ∈ 𝐹 ) |
| 22 | 2 | caovcl | ⊢ ( ( ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ∧ 𝐴 ∈ 𝐹 ) → ( ( 𝐴 ↑ 𝑤 ) · 𝐴 ) ∈ 𝐹 ) |
| 23 | 22 | ancoms | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ) → ( ( 𝐴 ↑ 𝑤 ) · 𝐴 ) ∈ 𝐹 ) |
| 24 | 23 | adantlr | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ) → ( ( 𝐴 ↑ 𝑤 ) · 𝐴 ) ∈ 𝐹 ) |
| 25 | nnnn0 | ⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℕ0 ) | |
| 26 | expp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑤 + 1 ) ) = ( ( 𝐴 ↑ 𝑤 ) · 𝐴 ) ) | |
| 27 | 17 25 26 | syl2an | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑤 + 1 ) ) = ( ( 𝐴 ↑ 𝑤 ) · 𝐴 ) ) |
| 28 | 27 | eleq1d | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ ) → ( ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ↔ ( ( 𝐴 ↑ 𝑤 ) · 𝐴 ) ∈ 𝐹 ) ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ) → ( ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ↔ ( ( 𝐴 ↑ 𝑤 ) · 𝐴 ) ∈ 𝐹 ) ) |
| 30 | 24 29 | mpbird | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ) → ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ) |
| 31 | 30 | exp31 | ⊢ ( 𝐴 ∈ 𝐹 → ( 𝑤 ∈ ℕ → ( ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 → ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ) ) ) |
| 32 | 31 | com12 | ⊢ ( 𝑤 ∈ ℕ → ( 𝐴 ∈ 𝐹 → ( ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 → ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ) ) ) |
| 33 | 32 | a2d | ⊢ ( 𝑤 ∈ ℕ → ( ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ) → ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ) ) ) |
| 34 | 7 10 13 16 21 33 | nnind | ⊢ ( 𝐵 ∈ ℕ → ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) |
| 35 | 34 | impcom | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |
| 36 | oveq2 | ⊢ ( 𝐵 = 0 → ( 𝐴 ↑ 𝐵 ) = ( 𝐴 ↑ 0 ) ) | |
| 37 | exp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) | |
| 38 | 17 37 | syl | ⊢ ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 0 ) = 1 ) |
| 39 | 36 38 | sylan9eqr | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 = 0 ) → ( 𝐴 ↑ 𝐵 ) = 1 ) |
| 40 | 39 3 | eqeltrdi | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 = 0 ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |
| 41 | 35 40 | jaodan | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |
| 42 | 4 41 | sylan2b | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |