This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcllem.1 | |- F C_ CC |
|
| expcllem.2 | |- ( ( x e. F /\ y e. F ) -> ( x x. y ) e. F ) |
||
| expcllem.3 | |- 1 e. F |
||
| Assertion | expcllem | |- ( ( A e. F /\ B e. NN0 ) -> ( A ^ B ) e. F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcllem.1 | |- F C_ CC |
|
| 2 | expcllem.2 | |- ( ( x e. F /\ y e. F ) -> ( x x. y ) e. F ) |
|
| 3 | expcllem.3 | |- 1 e. F |
|
| 4 | elnn0 | |- ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) |
|
| 5 | oveq2 | |- ( z = 1 -> ( A ^ z ) = ( A ^ 1 ) ) |
|
| 6 | 5 | eleq1d | |- ( z = 1 -> ( ( A ^ z ) e. F <-> ( A ^ 1 ) e. F ) ) |
| 7 | 6 | imbi2d | |- ( z = 1 -> ( ( A e. F -> ( A ^ z ) e. F ) <-> ( A e. F -> ( A ^ 1 ) e. F ) ) ) |
| 8 | oveq2 | |- ( z = w -> ( A ^ z ) = ( A ^ w ) ) |
|
| 9 | 8 | eleq1d | |- ( z = w -> ( ( A ^ z ) e. F <-> ( A ^ w ) e. F ) ) |
| 10 | 9 | imbi2d | |- ( z = w -> ( ( A e. F -> ( A ^ z ) e. F ) <-> ( A e. F -> ( A ^ w ) e. F ) ) ) |
| 11 | oveq2 | |- ( z = ( w + 1 ) -> ( A ^ z ) = ( A ^ ( w + 1 ) ) ) |
|
| 12 | 11 | eleq1d | |- ( z = ( w + 1 ) -> ( ( A ^ z ) e. F <-> ( A ^ ( w + 1 ) ) e. F ) ) |
| 13 | 12 | imbi2d | |- ( z = ( w + 1 ) -> ( ( A e. F -> ( A ^ z ) e. F ) <-> ( A e. F -> ( A ^ ( w + 1 ) ) e. F ) ) ) |
| 14 | oveq2 | |- ( z = B -> ( A ^ z ) = ( A ^ B ) ) |
|
| 15 | 14 | eleq1d | |- ( z = B -> ( ( A ^ z ) e. F <-> ( A ^ B ) e. F ) ) |
| 16 | 15 | imbi2d | |- ( z = B -> ( ( A e. F -> ( A ^ z ) e. F ) <-> ( A e. F -> ( A ^ B ) e. F ) ) ) |
| 17 | 1 | sseli | |- ( A e. F -> A e. CC ) |
| 18 | exp1 | |- ( A e. CC -> ( A ^ 1 ) = A ) |
|
| 19 | 17 18 | syl | |- ( A e. F -> ( A ^ 1 ) = A ) |
| 20 | 19 | eleq1d | |- ( A e. F -> ( ( A ^ 1 ) e. F <-> A e. F ) ) |
| 21 | 20 | ibir | |- ( A e. F -> ( A ^ 1 ) e. F ) |
| 22 | 2 | caovcl | |- ( ( ( A ^ w ) e. F /\ A e. F ) -> ( ( A ^ w ) x. A ) e. F ) |
| 23 | 22 | ancoms | |- ( ( A e. F /\ ( A ^ w ) e. F ) -> ( ( A ^ w ) x. A ) e. F ) |
| 24 | 23 | adantlr | |- ( ( ( A e. F /\ w e. NN ) /\ ( A ^ w ) e. F ) -> ( ( A ^ w ) x. A ) e. F ) |
| 25 | nnnn0 | |- ( w e. NN -> w e. NN0 ) |
|
| 26 | expp1 | |- ( ( A e. CC /\ w e. NN0 ) -> ( A ^ ( w + 1 ) ) = ( ( A ^ w ) x. A ) ) |
|
| 27 | 17 25 26 | syl2an | |- ( ( A e. F /\ w e. NN ) -> ( A ^ ( w + 1 ) ) = ( ( A ^ w ) x. A ) ) |
| 28 | 27 | eleq1d | |- ( ( A e. F /\ w e. NN ) -> ( ( A ^ ( w + 1 ) ) e. F <-> ( ( A ^ w ) x. A ) e. F ) ) |
| 29 | 28 | adantr | |- ( ( ( A e. F /\ w e. NN ) /\ ( A ^ w ) e. F ) -> ( ( A ^ ( w + 1 ) ) e. F <-> ( ( A ^ w ) x. A ) e. F ) ) |
| 30 | 24 29 | mpbird | |- ( ( ( A e. F /\ w e. NN ) /\ ( A ^ w ) e. F ) -> ( A ^ ( w + 1 ) ) e. F ) |
| 31 | 30 | exp31 | |- ( A e. F -> ( w e. NN -> ( ( A ^ w ) e. F -> ( A ^ ( w + 1 ) ) e. F ) ) ) |
| 32 | 31 | com12 | |- ( w e. NN -> ( A e. F -> ( ( A ^ w ) e. F -> ( A ^ ( w + 1 ) ) e. F ) ) ) |
| 33 | 32 | a2d | |- ( w e. NN -> ( ( A e. F -> ( A ^ w ) e. F ) -> ( A e. F -> ( A ^ ( w + 1 ) ) e. F ) ) ) |
| 34 | 7 10 13 16 21 33 | nnind | |- ( B e. NN -> ( A e. F -> ( A ^ B ) e. F ) ) |
| 35 | 34 | impcom | |- ( ( A e. F /\ B e. NN ) -> ( A ^ B ) e. F ) |
| 36 | oveq2 | |- ( B = 0 -> ( A ^ B ) = ( A ^ 0 ) ) |
|
| 37 | exp0 | |- ( A e. CC -> ( A ^ 0 ) = 1 ) |
|
| 38 | 17 37 | syl | |- ( A e. F -> ( A ^ 0 ) = 1 ) |
| 39 | 36 38 | sylan9eqr | |- ( ( A e. F /\ B = 0 ) -> ( A ^ B ) = 1 ) |
| 40 | 39 3 | eqeltrdi | |- ( ( A e. F /\ B = 0 ) -> ( A ^ B ) e. F ) |
| 41 | 35 40 | jaodan | |- ( ( A e. F /\ ( B e. NN \/ B = 0 ) ) -> ( A ^ B ) e. F ) |
| 42 | 4 41 | sylan2b | |- ( ( A e. F /\ B e. NN0 ) -> ( A ^ B ) e. F ) |