This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014) (Revised by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcllem.1 | ⊢ 𝐹 ⊆ ℂ | |
| expcllem.2 | ⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 · 𝑦 ) ∈ 𝐹 ) | ||
| expcllem.3 | ⊢ 1 ∈ 𝐹 | ||
| expcl2lem.4 | ⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ 𝐹 ) | ||
| Assertion | expcl2lem | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcllem.1 | ⊢ 𝐹 ⊆ ℂ | |
| 2 | expcllem.2 | ⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 · 𝑦 ) ∈ 𝐹 ) | |
| 3 | expcllem.3 | ⊢ 1 ∈ 𝐹 | |
| 4 | expcl2lem.4 | ⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ 𝐹 ) | |
| 5 | elznn0nn | ⊢ ( 𝐵 ∈ ℤ ↔ ( 𝐵 ∈ ℕ0 ∨ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) ) | |
| 6 | 1 2 3 | expcllem | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |
| 7 | 6 | ex | ⊢ ( 𝐴 ∈ 𝐹 → ( 𝐵 ∈ ℕ0 → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) → ( 𝐵 ∈ ℕ0 → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) |
| 9 | simpll | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → 𝐴 ∈ 𝐹 ) | |
| 10 | 1 9 | sselid | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → 𝐴 ∈ ℂ ) |
| 11 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → 𝐵 ∈ ℝ ) | |
| 12 | 11 | recnd | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → 𝐵 ∈ ℂ ) |
| 13 | nnnn0 | ⊢ ( - 𝐵 ∈ ℕ → - 𝐵 ∈ ℕ0 ) | |
| 14 | 13 | ad2antll | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → - 𝐵 ∈ ℕ0 ) |
| 15 | expneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) = ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) | |
| 16 | 10 12 14 15 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 𝐴 ↑ 𝐵 ) = ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) |
| 17 | difss | ⊢ ( 𝐹 ∖ { 0 } ) ⊆ 𝐹 | |
| 18 | simpl | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ) | |
| 19 | eldifsn | ⊢ ( 𝐴 ∈ ( 𝐹 ∖ { 0 } ) ↔ ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ) | |
| 20 | 18 19 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → 𝐴 ∈ ( 𝐹 ∖ { 0 } ) ) |
| 21 | 17 1 | sstri | ⊢ ( 𝐹 ∖ { 0 } ) ⊆ ℂ |
| 22 | 17 | sseli | ⊢ ( 𝑥 ∈ ( 𝐹 ∖ { 0 } ) → 𝑥 ∈ 𝐹 ) |
| 23 | 17 | sseli | ⊢ ( 𝑦 ∈ ( 𝐹 ∖ { 0 } ) → 𝑦 ∈ 𝐹 ) |
| 24 | 22 23 2 | syl2an | ⊢ ( ( 𝑥 ∈ ( 𝐹 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐹 ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐹 ) |
| 25 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐹 ∖ { 0 } ) ↔ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ≠ 0 ) ) | |
| 26 | 1 | sseli | ⊢ ( 𝑥 ∈ 𝐹 → 𝑥 ∈ ℂ ) |
| 27 | 26 | anim1i | ⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑥 ≠ 0 ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 28 | 25 27 | sylbi | ⊢ ( 𝑥 ∈ ( 𝐹 ∖ { 0 } ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 29 | eldifsn | ⊢ ( 𝑦 ∈ ( 𝐹 ∖ { 0 } ) ↔ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ≠ 0 ) ) | |
| 30 | 1 | sseli | ⊢ ( 𝑦 ∈ 𝐹 → 𝑦 ∈ ℂ ) |
| 31 | 30 | anim1i | ⊢ ( ( 𝑦 ∈ 𝐹 ∧ 𝑦 ≠ 0 ) → ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
| 32 | 29 31 | sylbi | ⊢ ( 𝑦 ∈ ( 𝐹 ∖ { 0 } ) → ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
| 33 | mulne0 | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) | |
| 34 | 28 32 33 | syl2an | ⊢ ( ( 𝑥 ∈ ( 𝐹 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐹 ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) |
| 35 | eldifsn | ⊢ ( ( 𝑥 · 𝑦 ) ∈ ( 𝐹 ∖ { 0 } ) ↔ ( ( 𝑥 · 𝑦 ) ∈ 𝐹 ∧ ( 𝑥 · 𝑦 ) ≠ 0 ) ) | |
| 36 | 24 34 35 | sylanbrc | ⊢ ( ( 𝑥 ∈ ( 𝐹 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐹 ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ( 𝐹 ∖ { 0 } ) ) |
| 37 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 38 | eldifsn | ⊢ ( 1 ∈ ( 𝐹 ∖ { 0 } ) ↔ ( 1 ∈ 𝐹 ∧ 1 ≠ 0 ) ) | |
| 39 | 3 37 38 | mpbir2an | ⊢ 1 ∈ ( 𝐹 ∖ { 0 } ) |
| 40 | 21 36 39 | expcllem | ⊢ ( ( 𝐴 ∈ ( 𝐹 ∖ { 0 } ) ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝐵 ) ∈ ( 𝐹 ∖ { 0 } ) ) |
| 41 | 20 14 40 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 𝐴 ↑ - 𝐵 ) ∈ ( 𝐹 ∖ { 0 } ) ) |
| 42 | 17 41 | sselid | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 𝐴 ↑ - 𝐵 ) ∈ 𝐹 ) |
| 43 | eldifsn | ⊢ ( ( 𝐴 ↑ - 𝐵 ) ∈ ( 𝐹 ∖ { 0 } ) ↔ ( ( 𝐴 ↑ - 𝐵 ) ∈ 𝐹 ∧ ( 𝐴 ↑ - 𝐵 ) ≠ 0 ) ) | |
| 44 | 41 43 | sylib | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( ( 𝐴 ↑ - 𝐵 ) ∈ 𝐹 ∧ ( 𝐴 ↑ - 𝐵 ) ≠ 0 ) ) |
| 45 | 44 | simprd | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 𝐴 ↑ - 𝐵 ) ≠ 0 ) |
| 46 | neeq1 | ⊢ ( 𝑥 = ( 𝐴 ↑ - 𝐵 ) → ( 𝑥 ≠ 0 ↔ ( 𝐴 ↑ - 𝐵 ) ≠ 0 ) ) | |
| 47 | oveq2 | ⊢ ( 𝑥 = ( 𝐴 ↑ - 𝐵 ) → ( 1 / 𝑥 ) = ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) | |
| 48 | 47 | eleq1d | ⊢ ( 𝑥 = ( 𝐴 ↑ - 𝐵 ) → ( ( 1 / 𝑥 ) ∈ 𝐹 ↔ ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ∈ 𝐹 ) ) |
| 49 | 46 48 | imbi12d | ⊢ ( 𝑥 = ( 𝐴 ↑ - 𝐵 ) → ( ( 𝑥 ≠ 0 → ( 1 / 𝑥 ) ∈ 𝐹 ) ↔ ( ( 𝐴 ↑ - 𝐵 ) ≠ 0 → ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ∈ 𝐹 ) ) ) |
| 50 | 4 | ex | ⊢ ( 𝑥 ∈ 𝐹 → ( 𝑥 ≠ 0 → ( 1 / 𝑥 ) ∈ 𝐹 ) ) |
| 51 | 49 50 | vtoclga | ⊢ ( ( 𝐴 ↑ - 𝐵 ) ∈ 𝐹 → ( ( 𝐴 ↑ - 𝐵 ) ≠ 0 → ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ∈ 𝐹 ) ) |
| 52 | 42 45 51 | sylc | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ∈ 𝐹 ) |
| 53 | 16 52 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |
| 54 | 53 | ex | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) → ( ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) |
| 55 | 8 54 | jaod | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) → ( ( 𝐵 ∈ ℕ0 ∨ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) |
| 56 | 5 55 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) → ( 𝐵 ∈ ℤ → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) |
| 57 | 56 | 3impia | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |