This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for exidres and exidresid . (Contributed by Jeff Madsen, 8-Jun-2010) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | exidres.1 | ⊢ 𝑋 = ran 𝐺 | |
| exidres.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | ||
| exidres.3 | ⊢ 𝐻 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) | ||
| Assertion | exidreslem | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ( 𝑈 ∈ dom dom 𝐻 ∧ ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exidres.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | exidres.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | |
| 3 | exidres.3 | ⊢ 𝐻 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) | |
| 4 | 3 | dmeqi | ⊢ dom 𝐻 = dom ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) |
| 5 | xpss12 | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑋 ) ) | |
| 6 | 5 | anidms | ⊢ ( 𝑌 ⊆ 𝑋 → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 7 | 1 | opidon2OLD | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) |
| 8 | fof | ⊢ ( 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) | |
| 9 | fdm | ⊢ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 → dom 𝐺 = ( 𝑋 × 𝑋 ) ) | |
| 10 | 7 8 9 | 3syl | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → dom 𝐺 = ( 𝑋 × 𝑋 ) ) |
| 11 | 10 | sseq2d | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( ( 𝑌 × 𝑌 ) ⊆ dom 𝐺 ↔ ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑋 ) ) ) |
| 12 | 6 11 | imbitrrid | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( 𝑌 ⊆ 𝑋 → ( 𝑌 × 𝑌 ) ⊆ dom 𝐺 ) ) |
| 13 | 12 | imp | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑌 × 𝑌 ) ⊆ dom 𝐺 ) |
| 14 | ssdmres | ⊢ ( ( 𝑌 × 𝑌 ) ⊆ dom 𝐺 ↔ dom ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) = ( 𝑌 × 𝑌 ) ) | |
| 15 | 13 14 | sylib | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) → dom ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) = ( 𝑌 × 𝑌 ) ) |
| 16 | 4 15 | eqtrid | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) → dom 𝐻 = ( 𝑌 × 𝑌 ) ) |
| 17 | 16 | dmeqd | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) → dom dom 𝐻 = dom ( 𝑌 × 𝑌 ) ) |
| 18 | dmxpid | ⊢ dom ( 𝑌 × 𝑌 ) = 𝑌 | |
| 19 | 17 18 | eqtrdi | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) → dom dom 𝐻 = 𝑌 ) |
| 20 | 19 | eleq2d | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑈 ∈ dom dom 𝐻 ↔ 𝑈 ∈ 𝑌 ) ) |
| 21 | 20 | biimp3ar | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → 𝑈 ∈ dom dom 𝐻 ) |
| 22 | ssel2 | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) | |
| 23 | 1 2 | cmpidelt | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) |
| 24 | 22 23 | sylan2 | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑥 ∈ 𝑌 ) ) → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) |
| 25 | 24 | anassrs | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) |
| 26 | 25 | adantrl | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) ) → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) |
| 27 | 3 | oveqi | ⊢ ( 𝑈 𝐻 𝑥 ) = ( 𝑈 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑥 ) |
| 28 | ovres | ⊢ ( ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑈 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑥 ) = ( 𝑈 𝐺 𝑥 ) ) | |
| 29 | 27 28 | eqtrid | ⊢ ( ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑈 𝐻 𝑥 ) = ( 𝑈 𝐺 𝑥 ) ) |
| 30 | 29 | eqeq1d | ⊢ ( ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 𝑥 ) = 𝑥 ) ) |
| 31 | 3 | oveqi | ⊢ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑈 ) |
| 32 | ovres | ⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑈 ∈ 𝑌 ) → ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑈 ) = ( 𝑥 𝐺 𝑈 ) ) | |
| 33 | 31 32 | eqtrid | ⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑈 ∈ 𝑌 ) → ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐺 𝑈 ) ) |
| 34 | 33 | ancoms | ⊢ ( ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐺 𝑈 ) ) |
| 35 | 34 | eqeq1d | ⊢ ( ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ↔ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) |
| 36 | 30 35 | anbi12d | ⊢ ( ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ↔ ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) ) |
| 37 | 36 | adantl | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) ) → ( ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ↔ ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) ) |
| 38 | 26 37 | mpbird | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) ) → ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) |
| 39 | 38 | anassrs | ⊢ ( ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑈 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) |
| 40 | 39 | ralrimiva | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑈 ∈ 𝑌 ) → ∀ 𝑥 ∈ 𝑌 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) |
| 41 | 40 | 3impa | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ∀ 𝑥 ∈ 𝑌 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) |
| 42 | 13 | 3adant3 | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ( 𝑌 × 𝑌 ) ⊆ dom 𝐺 ) |
| 43 | 42 14 | sylib | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → dom ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) = ( 𝑌 × 𝑌 ) ) |
| 44 | 4 43 | eqtrid | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → dom 𝐻 = ( 𝑌 × 𝑌 ) ) |
| 45 | 44 | dmeqd | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → dom dom 𝐻 = dom ( 𝑌 × 𝑌 ) ) |
| 46 | 45 18 | eqtrdi | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → dom dom 𝐻 = 𝑌 ) |
| 47 | 41 46 | raleqtrrdv | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) |
| 48 | 21 47 | jca | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ( 𝑈 ∈ dom dom 𝐻 ∧ ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) ) |