This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for exidres and exidresid . (Contributed by Jeff Madsen, 8-Jun-2010) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | exidres.1 | |- X = ran G |
|
| exidres.2 | |- U = ( GId ` G ) |
||
| exidres.3 | |- H = ( G |` ( Y X. Y ) ) |
||
| Assertion | exidreslem | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> ( U e. dom dom H /\ A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exidres.1 | |- X = ran G |
|
| 2 | exidres.2 | |- U = ( GId ` G ) |
|
| 3 | exidres.3 | |- H = ( G |` ( Y X. Y ) ) |
|
| 4 | 3 | dmeqi | |- dom H = dom ( G |` ( Y X. Y ) ) |
| 5 | xpss12 | |- ( ( Y C_ X /\ Y C_ X ) -> ( Y X. Y ) C_ ( X X. X ) ) |
|
| 6 | 5 | anidms | |- ( Y C_ X -> ( Y X. Y ) C_ ( X X. X ) ) |
| 7 | 1 | opidon2OLD | |- ( G e. ( Magma i^i ExId ) -> G : ( X X. X ) -onto-> X ) |
| 8 | fof | |- ( G : ( X X. X ) -onto-> X -> G : ( X X. X ) --> X ) |
|
| 9 | fdm | |- ( G : ( X X. X ) --> X -> dom G = ( X X. X ) ) |
|
| 10 | 7 8 9 | 3syl | |- ( G e. ( Magma i^i ExId ) -> dom G = ( X X. X ) ) |
| 11 | 10 | sseq2d | |- ( G e. ( Magma i^i ExId ) -> ( ( Y X. Y ) C_ dom G <-> ( Y X. Y ) C_ ( X X. X ) ) ) |
| 12 | 6 11 | imbitrrid | |- ( G e. ( Magma i^i ExId ) -> ( Y C_ X -> ( Y X. Y ) C_ dom G ) ) |
| 13 | 12 | imp | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) -> ( Y X. Y ) C_ dom G ) |
| 14 | ssdmres | |- ( ( Y X. Y ) C_ dom G <-> dom ( G |` ( Y X. Y ) ) = ( Y X. Y ) ) |
|
| 15 | 13 14 | sylib | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) -> dom ( G |` ( Y X. Y ) ) = ( Y X. Y ) ) |
| 16 | 4 15 | eqtrid | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) -> dom H = ( Y X. Y ) ) |
| 17 | 16 | dmeqd | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) -> dom dom H = dom ( Y X. Y ) ) |
| 18 | dmxpid | |- dom ( Y X. Y ) = Y |
|
| 19 | 17 18 | eqtrdi | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) -> dom dom H = Y ) |
| 20 | 19 | eleq2d | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) -> ( U e. dom dom H <-> U e. Y ) ) |
| 21 | 20 | biimp3ar | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> U e. dom dom H ) |
| 22 | ssel2 | |- ( ( Y C_ X /\ x e. Y ) -> x e. X ) |
|
| 23 | 1 2 | cmpidelt | |- ( ( G e. ( Magma i^i ExId ) /\ x e. X ) -> ( ( U G x ) = x /\ ( x G U ) = x ) ) |
| 24 | 22 23 | sylan2 | |- ( ( G e. ( Magma i^i ExId ) /\ ( Y C_ X /\ x e. Y ) ) -> ( ( U G x ) = x /\ ( x G U ) = x ) ) |
| 25 | 24 | anassrs | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) /\ x e. Y ) -> ( ( U G x ) = x /\ ( x G U ) = x ) ) |
| 26 | 25 | adantrl | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) /\ ( U e. Y /\ x e. Y ) ) -> ( ( U G x ) = x /\ ( x G U ) = x ) ) |
| 27 | 3 | oveqi | |- ( U H x ) = ( U ( G |` ( Y X. Y ) ) x ) |
| 28 | ovres | |- ( ( U e. Y /\ x e. Y ) -> ( U ( G |` ( Y X. Y ) ) x ) = ( U G x ) ) |
|
| 29 | 27 28 | eqtrid | |- ( ( U e. Y /\ x e. Y ) -> ( U H x ) = ( U G x ) ) |
| 30 | 29 | eqeq1d | |- ( ( U e. Y /\ x e. Y ) -> ( ( U H x ) = x <-> ( U G x ) = x ) ) |
| 31 | 3 | oveqi | |- ( x H U ) = ( x ( G |` ( Y X. Y ) ) U ) |
| 32 | ovres | |- ( ( x e. Y /\ U e. Y ) -> ( x ( G |` ( Y X. Y ) ) U ) = ( x G U ) ) |
|
| 33 | 31 32 | eqtrid | |- ( ( x e. Y /\ U e. Y ) -> ( x H U ) = ( x G U ) ) |
| 34 | 33 | ancoms | |- ( ( U e. Y /\ x e. Y ) -> ( x H U ) = ( x G U ) ) |
| 35 | 34 | eqeq1d | |- ( ( U e. Y /\ x e. Y ) -> ( ( x H U ) = x <-> ( x G U ) = x ) ) |
| 36 | 30 35 | anbi12d | |- ( ( U e. Y /\ x e. Y ) -> ( ( ( U H x ) = x /\ ( x H U ) = x ) <-> ( ( U G x ) = x /\ ( x G U ) = x ) ) ) |
| 37 | 36 | adantl | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) /\ ( U e. Y /\ x e. Y ) ) -> ( ( ( U H x ) = x /\ ( x H U ) = x ) <-> ( ( U G x ) = x /\ ( x G U ) = x ) ) ) |
| 38 | 26 37 | mpbird | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) /\ ( U e. Y /\ x e. Y ) ) -> ( ( U H x ) = x /\ ( x H U ) = x ) ) |
| 39 | 38 | anassrs | |- ( ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) /\ U e. Y ) /\ x e. Y ) -> ( ( U H x ) = x /\ ( x H U ) = x ) ) |
| 40 | 39 | ralrimiva | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) /\ U e. Y ) -> A. x e. Y ( ( U H x ) = x /\ ( x H U ) = x ) ) |
| 41 | 40 | 3impa | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> A. x e. Y ( ( U H x ) = x /\ ( x H U ) = x ) ) |
| 42 | 13 | 3adant3 | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> ( Y X. Y ) C_ dom G ) |
| 43 | 42 14 | sylib | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> dom ( G |` ( Y X. Y ) ) = ( Y X. Y ) ) |
| 44 | 4 43 | eqtrid | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> dom H = ( Y X. Y ) ) |
| 45 | 44 | dmeqd | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> dom dom H = dom ( Y X. Y ) ) |
| 46 | 45 18 | eqtrdi | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> dom dom H = Y ) |
| 47 | 41 46 | raleqtrrdv | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) |
| 48 | 21 47 | jca | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> ( U e. dom dom H /\ A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) ) |